Credit Paper 12002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

1. Given $7.18-2.1 \times 3$

Remembering BODMAS we do the Multiplication first then the Addition.
$2.1 \times 3=6.3$ then $7.18-6.3=0.88$
2. Given $1 \frac{1}{8} \div \frac{3}{4}$

Using the rules for fractions we have

Make top heavy $\frac{9}{8} \div \frac{3}{4}$

We then turn the fraction $\frac{3}{4}$ up side down and then change division to multiplication.

$$
\frac{9}{8} \cdot \frac{4}{3}=\frac{9}{6}=\frac{3}{2}
$$

Credit Paper 12002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
3. Given $5-x>2 \cdot(x+1)$

First multiply bracket out
$5-x>2 x+2$

Gather terms together $5-2>2 x+x$

Simplify $\quad 3>3 x$

Hence $\quad x<1$
4. Given $f(x)=x^{2}+5 x$

Substitute $x=-3$
$f(-3)=(-3)^{2}+5 \cdot(-3)=9-15=-6$
5. Given $p^{2}-4 q^{2}$
(a) Factorising we get $p^{2}-4 q^{2}=(p-2 q) \cdot(p+2 q)$ difference of 2 squares
(b) Using part (a) we can simply the expression given below as follows:-

$$
\frac{p^{2}-4 \cdot q^{2}}{3 p+6 q}=\frac{(p-2 q) \cdot(p+2 q)}{3(p+2 q)}=\frac{(p-2 q)}{3}
$$

Credit Paper 12002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
6. Given $L=\frac{1}{2} \cdot(h-t)$

Rearranging to get h to be the subject of the equation we have

1. Multiply through by $2 \mathrm{~L}=(\mathrm{h}-\mathrm{t})$
2. Remove the brackets $2 \mathrm{~L}=\mathrm{h}-\dagger$
3. Add \dagger to both sides $2 L+\dagger=h-\dagger+\dagger$
4. Simplify $2 L+t=h$

Hence we have $\quad h=2 L+\dagger$

Scottish Standard Grade Credit Course

www.mathsrevision.com

Credit Paper 12002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
7. Given the diagram below we can find $\cos (A)$ as follows:-

Using the cosine formula we have

$$
\cos (A)=\frac{b^{2}+c^{2}-a^{2}}{2 b \cdot c}=\frac{5^{2}+4^{2}-6^{2}}{2 \cdot 5 \cdot 4}=\frac{25+16-36}{40}=\frac{5}{40}=\frac{1}{8}
$$

Credit Paper 12002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
8. Given the data we can draw 2 box plots.

111922252529313436384046495050
Handed out questionnaire
151521222325263133343739414646
Posted out questionnaire
Handed out Posted out

$Q_{1}=25$	$Q_{1}=22$
$Q_{2}=34$	$Q_{2}=31$
$Q_{3}=46$	$Q_{3}=39$

posted

Credit Paper 12002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
9. Given $f(x)=x^{2}+2 x-1 \quad g(x)=5 x+3$

For $f(x)=g(x)$ we have

$$
\begin{aligned}
& x^{2}+2 x-1=5 x+3 \\
& \left(x^{2}+2 \cdot x-1\right)-(5 x+3)=0 \\
& x^{2}+(2 x-5 x)-1-3=0 \\
& x^{2}-3 x-4=0
\end{aligned}
$$

Factorising we get

$$
\begin{aligned}
& (x-4) \cdot(x+1)=0 \\
& \sqrt{x=4} \text { And } \sqrt{x=-1}
\end{aligned}
$$

10. Given

$$
\sqrt{27}+2 \cdot \sqrt{3}
$$

Simplifying we get

$$
\sqrt{9} \cdot \sqrt{3}+2 \cdot \sqrt{3}=3 \cdot \sqrt{3}+2 \cdot \sqrt{3}=5 \cdot \sqrt{3}
$$

Credit Paper 12002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
11. Given $y^{8} \cdot\left(y^{3}\right)^{-2}$

Simplifying using the rules for indices we have
$y^{8} \cdot\left(y^{3}\right)^{-2}=y^{8} \cdot y^{-6}=y^{(8-6)}=y^{2}$
12. Given the graph with the best-fit line $A B$ below.

and $A(0,12) B(90,82)$
We can work out the equation of the straight line as follows:-
Gradient
$m=\frac{g_{2}-g_{1}}{h_{2}-h_{1}}=\frac{82-12}{90-0}=\frac{70}{90}=\frac{7}{9}$
Equation is given by

$$
m=\frac{7}{9} \quad g-12=\frac{7}{9} \cdot(h-0)
$$

$$
\begin{aligned}
& g-b=m(h-a) \quad(a, b)=(0,12) \\
& g-12=\frac{7}{9} \cdot(h-0) \\
& g=\frac{7}{9} \cdot h+12
\end{aligned}
$$

Credit Paper 12002

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
13. From the information given we can write 2 equations.
(a) $4 p+3 g=130$
(b) $2 p+4 g=120$
(c) Solving the 2 equations in part (a) and (b) we can get the cost for a peach (p) and grapefruit (g).

$$
\begin{array}{ll}
4 p+3 g=130 & \text { Equation 1 } \\
2 p+4 g=120 & \text { Equation 2 }
\end{array}
$$

Multiplying equation 2 by 2 subtracting equation 1 from it we have

$$
\begin{aligned}
& 4 p+8 g=240 \\
& 4 p+3 g=130 \\
& 5 g=110 \\
& g=22
\end{aligned}
$$

Substituting the value found for (g) into equation 1 we can find (p).

$$
\begin{aligned}
& 4 p+3(22)=130 \\
& 4 p=130-66 \\
& 4 p=64 \\
& p=16
\end{aligned}
$$

Hence 3 peaches and 2 grapefruits will cost

$$
3 p+2 g=3(16)+2(22)=92 \text { pence }
$$

