Greenfaulds High School

Technical Department

Nat 4 \& 5 - Graphic Communication Line Types \& Geometric Shapes Drawing Practice

Linetypes

There are various different linetypes used in Graphic Communication. The most common ones are shown below.

Task 1. Copy and complete the lines in the boxes provided. Use a set square to keep the lines straight. Assess your own work when complete.

A- A thick, continuous line shows visible outlines and visible edges.

How well have you copied the line shown? $123 \quad$ (circle, $1=$ good, $2=\mathrm{OK}, 3=$ poor)
B- A thin, continuous line is used for projection lines and construction lines.

How well have you copied the line shown? 123 (circle, $1=$ good, $2=\mathrm{OK}, 3=$ poor)

Linetypes

There are various different linetypes used in Graphic Communication. The most common ones are shown below.

Task 1. Copy and complete the lines in the boxes provided. Use a set square to keep the lines straight. Assess your own work when complete.

A- A thick, continuous line shows visible outlines and visible edges.

How well have you copied the line shown? $123 \quad$ (circle, $1=$ good, $2=\mathrm{OK}, 3=$ poor)
B- A thin, continuous line is used for projection lines and construction lines.

How well have you copied the line shown? 123 (circle, $1=$ good, $2=\mathrm{OK}, 3=$ poor)

C- A thin, broken line shows hidden outlines and hidden edges.

How well have you copied the line shown? 123 (circle, 1=good, 2=OK, 3=poor)
D- A thin chain line shows a centre line, e.g. the centres of circles, cylinders and cones.

How well have you copied the line shown? 123 (circle, 1=good, 2=OK, 3=poor)

E- Chain thin thick at both ends and can change in direction. Used on Cutting planes.

How well have you copied the line shown? 123 (circle, 1=good, 2=OK, 3=poor)
F- A thin double dash chain line is used as a fold line to indicate where a surface development should be folded.

How well have you copied the line shown? 123 (circle, 1=good, 2=OK, 3=poor)

Square - 50 side

Square - 50 side

Hexagon - $70 \mathrm{~A} / \mathrm{F}$

Hexagon - $70 \mathrm{~A} / \mathrm{F}$

Hexagon - $70 \mathrm{~A} / \mathrm{C}$ Hexagon- 35 side

Hexagon-70 A/C Hexagon- 35 side

Name:	Class:	Date:	-	Question No: Introduction to Drawing Basic Shapes

| Name: \quad Class: | Date: | Question No: | Introduction to Drawing Basic Shapes |
| :--- | :--- | :--- | :--- | :--- | :--- |

NOT TO SCALE

Name:	Class:	Date:		Question No: Introduction to Drawing Basic Shapes

