Guide

To

British Standards

Higher Graphic Communication

CONTENTS

page

TITLE BLOCK 2
DRAWING SCALES 2
LINE TYPES 3
ORTHOGRAPHIC PROJECTION 4
SECTIONAL VIEWS 4
SCREW THREADS \& COMPONENTS 7
INTERUPTTED VIEWS \& PARTIAL VIEWS 9
DIMENSIONING 10
TOLERANCES 13

Title Blocks should be at the bottom of any drawing sheet and extend to the lower right-hand corner of the page.

Information that should be contained in a title block is the following:-

- Name
- Projection Symbol
- Title
- Date
- Original Scale
- Drawing Number
- Dimensional Tolerance

Drawing Scales

Every technical drawing needs to be drawn in an accurate proportion, also known as scale, which is given in ratio format. It is crucial that you aware of the following scales within the Higher course.

Full Size \quad - $1: 1$

Reduction Scales

Enlargement Scales

1:2, 1:5, 1:10, 1:20, 1:50, 1:100, 1:200, 1:500 \& 1:1000
$2: 1,5: 1,10: 1,20: 1 \& 50: 1$

Full Size (1:1)

Enlargement (2:1)

Line	Description	Application
Continuous thick	Visible outlines and edges.	
	Continuous thin	Dimensions, projection and leader lines, hatching, outlines of revolved sections, short centre lines, imaginary intersections.
	Continuous thin irregular	Limits of partial or interrupted views and sections if the limit is not an axis.
	Straight zigzags	

Orthographic Projection

Orthographic drawings are usually created using a projection method, such as FIRST ANGLE and THIRD ANGLE projection. Of the two methods the most widely used is Third angle orthographic projection.

The symbol for Third angle is shown above.

Sectional Views

There are many types of sectional views that are used to aid the understanding of production drawings. The following is a list of the various types of sectional views for showing detail in more complex engineered objects.

The various types of sectional views are:-

- Full section
- Half section
- Stepped section
- Part section
- Revolved section
- Removed section

FULL SECTION

This is the normal way of cutting a section. The cutting plane lies on a single plane and passes through the entire object. Half of the object is removed to show the internal detail.

HALF SECTION

This technique is used to show the exterior and interior of a symmetrical object in a single projection view. The cutting plane cuts halfway to the axis or centre of the object. A quarter of the object is imagined to be removed. The resulting drawing view is a half outside and half section view.

Example of a Half Section

STEPPED SECTION

If the important internal features of an object are not lying on a single plane, a full section may not be able to show all the details. Stepped section is a technique whereby the cutting plane offsets to pass through various features that would otherwise be missed by a full section. Thick lines should be used at the change of direction of the cutting plane.

Example of a Stepped Section

PART SECTION

Part section is a technique that is used to expose a small part of the interior of an object by removing a small part of the object. The view is basically an outside view with a small portion removed. The break line is illustrated with irregular thin continuous lines.

Example of a Part Section

REVOLVED SECTION

Revolved section shows only the features on the cut plane. It is used to depict the section of an elongated object without the need to show the entire sectional view. Instead of projecting the section onto an adjacent view, the resulting section obtained from the cutting is revolved 90° and is placed on the same view.

Example of a Revolved Section

REMOVED SECTION

Removed section is similar to revolved section in that only the cut plane is shown. However, the section is placed elsewhere on the drawing.

Example of a Removed Section

PARTS NOT SECTIONED

To improve clarity, standard parts will not be section-lined even though the cutting plane passes them.

These standard parts are:-

- Solid shafts
- Bolts and Nuts
- Ribs
- Spokes of wheels / Axles of Wheels
- Webs

Screw Threads \& Other Components

With assembled drawings you made be asked to draw a sectional view of an assembled component that might include a fixing such as a screw, bolt etc...

Below are the symbols which represent each possible component:-

Internal Thread (Blind Hole)
Internal Thread (Through hole)

When screws or bolts are inserted the sectioning changes, you only section to the outside line not inside as the drawings above show.

Bolt within Blind Hole

Bolt with Through Hole

External Thread (Notice that cut circle on inside)

Other Components

Roller Bearing

Springs

Knurling

Knurling is the name given to the texture that is sometimes found on metal controls, this process allows the metal to have a specific pattern cut into the bar to give it greater grip control.

The BS standard for this process is represented below:-

Straight Knurling

Diamond Knurling (Drawn at 30)

Interrupted Views \& Partial Views

Drawings can be made to fit a sheet or computer screen more easily using interrupted views. These views only show portions of a long or large object that are necessary to define it. They are drawn close to each other and break lines are used to define edges of the section that has been removed as shown below:-

Conventional Break lines for Solid Shaft.

Conventional Break lines for Hollow Shaft.

General Break Lines.

Break lines of Object that doesn't have an Axis

Partial Views

Sometimes it is not ideal to have a full view enlarged, these are the cases in which a partial view maybe more suitable. This allows you to enlarge a detail and improve clarity.

Dimensioning

Dimensioning is an integral part of Graphic Communication, the method of dimensioning currently used in Higher is the same standard currently used in the UK is set by the British Standards Institution in their document BS 8888.

Dimensioning Rules:-

- All measurements should be in $\mathbf{m m}$ unless stated in the Title Block.
- Crossing of projection / leader lines should be avoided if possible.
- There should be no repeated dimensions as not to clutter the drawing.

Below are the various ways in which dimensions may appear on a drawing:-

Parallel Dimensioning

Parallel dimensioning consists of a number of dimensions that originate from a specific edge (Datum Edge).

Running Dimensioning

Running dimensioning is a simplified form of parallel dimensioning that can be used when space is limited.

Chain Dimensioning

Chain dimensioning consists of a chain of dimensions. This method can lead to an accumulation of tolerances that will affect the function of the part.

Combined Dimensioning

Combined dimensioning is a combination of both parallel and chain dimensioning that can be used when space is limited or when the drawing is very complex.

Dimensioning by Coordinates

Dimensioning by coordinates uses running dimensioning in two directions at right angles, the common origin can be from any datum point stated. This makes it clearer to read and less cluttered on the drawing.

Dimension Key Points

Leader Line

Narrow lines which lead from points on a view to the arrowhead dimension lines. A small gap should be left between the view and the leader line.

Diameters

Radial

Pitch Circle Diameter

Angular

Tolerances

When products are manufactured in industry due to manufacturing processes it is very difficult to achieve absolute accuracy in the size of the finished item. This creates problems when manufactured items have to fit accurately with other parts and also possibly the function of the product.

When individual component parts are manufactured in batches of thousands or more, it is not economic to accept parts that do not fit and so cannot be assembled. To overcome this problem, items are manufactured with an acceptable margin of dimensional error called Tolerance.

Common Method Symmetrical Tolerance Asymmetrical Tolerance

Common Method Shows the upper limit of size placed above the lower limit.
Symmetrical Shows the additional size for both upper and lower which are the same.

Asymmetrical
Shows the additional size for both upper and lower limits which might be different sizes.

Functional	A dimension that is essential to the function of a component or space and should be kept to the required dimension.
Non Functional \quadA dimension that is not essential to the function of a component or space but may be altered without causing issue with component.	

