

National 5 Chemistry

Relevant Past Paper Questions from SQA Standard Grade Credit and Intermediate 2 papers

Unit 1: Chemical Changes and Structure

March 2014

Transforming lives through learning

N5 Chemistry Past Paper Questions

This resource has been produced in response to the requests from practitioners who attended the National Qualifications Sciences events at Hampden Stadium in December 2013 which Education Scotland organised in partnership with the SQA.

The questions in this resource relate to the Chemical Changes and Structure Unit for National 5 Chemistry and have been taken from the 2011, 2012 and 2013 Standard Grade and Intermediate 2 Past Papers.

For Chemical Changes and Structure (Unit 1), the mandatory course key areas are as follows:

- Rates of reaction
- Atomic structure and bonding related to properties of materials
- Formulae and reaction quantities
- Acids and bases

In cases where the questions relate to more than one of the National 5 Units, the constituent parts of the question have been separated into their respective key areas. The stem of the question has been retained to give the context of the question. If practitioners require the full integrated question, they should refer to the original past paper on the <u>SQA website</u>.

Past paper questions for the other two National 5 Units, Nature's Chemistry and Chemistry in Society, are also available from Education Scotland's National Qualifications Glow

portal: <u>http://www.educationscotland.gov.uk/nqcoursematerials/</u> (cut and paste link into your browser).

Education Scotland would like to acknowledge the support of the SQA in helping us produce this resource. We hope it proves helpful to practitioners across Scotland and assists with the implementation of the national qualifications.

Rates of reaction

Chemical changes and structure Rates of reaction

(a)

(i)

Marks

Rapid inflation of airbags in cars is caused by the production of nitrogen gas.

The graph gives information on the volume of gas produced over 30 microseconds.

_ litres per microsecond

= 2.75 (2.8, 3 must have working)

or 2.75 on its own

Chemical changes and structure Rates of reaction

(c)

Egg shells are made up mainly of calcium carbonate. A pupil carried out an experiment to react egg shells with dilute hydrochloric acid. A gas was produced. The volume of gas produced during the reaction was measured.

Time (min)	Volume of gas (cm ³)
0	0
2	47
4	92
6	114
8	118
10	118

Plot these results as a line graph.

Marks

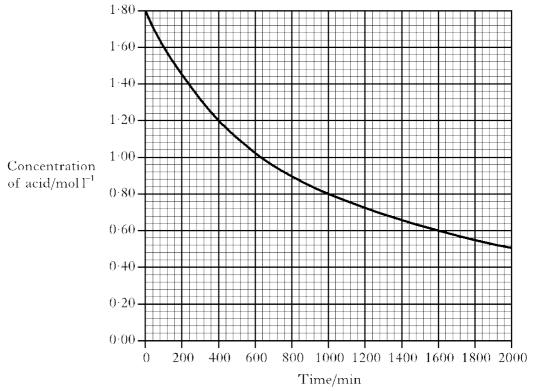
Answer

Correct labels and units 1 Scale on X and Y axis 1 Correct plotting and joining of points 1

-1 if not at least half the graph paper -1 if line not through origin

Max of 2 marks if bar or spike graph (labels, units and scale) or if both scales taken from the table

Allow $\frac{1}{2}$ box tolerance on plotting points Allow one plotting error


Axes can be reversed 0,0 doesn't need to be marked on scale but line must go through origin Chemical changes and structure Rates of reaction

Higher 2011 1

Chloromethane, CH3Cl, can be produced by reacting methanol solution with dilute hydrochloric acid using a solution of zinc chloride as a catalyst.

 $CH_3OH(aq) + HCl(aq) \xrightarrow{ZnCl_2(aq)} CH_3Cl(aq) + H_2O(\ell)$

(b) (i) The graph shows how the concentration of the hydrochloric acid changed over a period 1 of time when the reaction was carried out at 20 °C.

Calculate the average rate, in mol l–1 min–1, in the first 400 minutes.

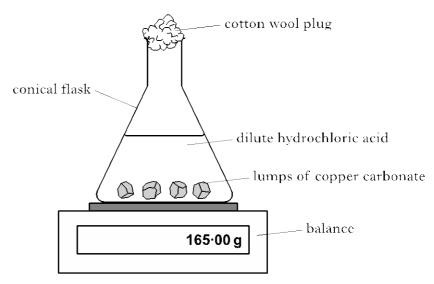
Answer

(b) (i) Answer 0.0015

1

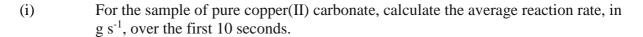
Units not required. (Incorrect units -1/2)

Marks


Chemical changes and structure Rates of reaction

Higher 2012 2

Copper (II) carbonate reacts with dilute hydrochloric acid as shown.


 $CuCO_3(s) + 2HCl(aq) \rightarrow CuCl_2(aq) + H_2O(\ell) + CO_2(g)$

A student used the apparatus shown below to follow the progress of the reaction.

The experiment was carried out using 0.50 g samples of both pure and impure copper (II) carbonate. The graph below shows the results obtained.

165.00164.95Mass/g 164.90164.85164.80102030 40 50 60 Ċ Time/s • Pure CuCO₃ ---- Impure $CuCO_3$

Marks

1

(b)

Answers (i) 0.017 Units not required Deduct ½ mark for incorrect units

1 mark

Atomic structure and bonding related to properties of materials

Chemical changes and structure Atomic structure and bonding related to properties of materials

Marks

1

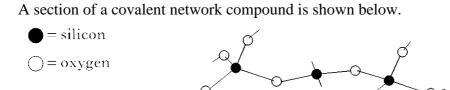
The properties of a substance depend on its type of bonding and structure.

There are four types of bonding and structure.

Discrete covalent	Covalent	Ionic	Metallic
molecular	network	lattice	lattice

(a)

Int 2


2011

1

Complete the table to match up each type of bonding and structure with its properties. 4

Bonding and structure type	Properties
	do not conduct electricity and have high melting points
	have high melting points and conduct electricity when liquid but not when solid
	conduct electricity when solid and have a wide range of melting points
	do not conduct electricity and have low melting points

(b)

Write the formula for this covalent network compound.

Answers

(a)

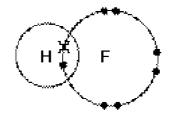
1st – covalent network (accept covalent lattice)

2nd - ionic lattice

3rd – metallic lattice

4th – discrete covalent/covalent molecular 1 mark each Accept abbreviations if obvious

(b)

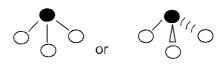

Si0₂ O₂Si Simplest Ratio

Information on some two-element molecules is shown in the table.

Name	Formula	Shape of molecule
hydrogen fluoride	HF	
water	H ₂ O	
ammonia	NH ₃	

(a) Complete the table to show the shape of a molecule of ammonia.

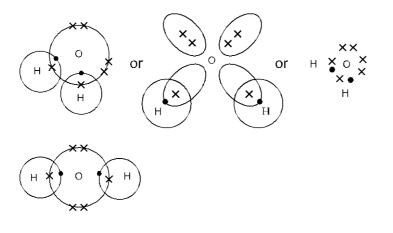
(b) The hydrogen fluoride molecule can be represented as:



Showing all outer electrons, draw a similar diagram to represent a molecule of water, $\mathrm{H}_2\mathrm{O}.$

Marks

Answers


(a)

Use professional judgement to establish pyramidal shape

Accept symbols, colours other way around

At least one of the symbols must be shown Mixture of dots and crosses are acceptable All dots or crosses acceptable Accept Lewis dot diagram Ignore inner electrons on oxygen Allow for 1 slip for misplaced electron (professional judgement) Accept electron pair on line of touching circles Non shared electrons do not need to be in pairs

			Chemical changes and structure	
			Atomic structure and bonding related to properties of materials	
Int 2				Marks
2011 4			Research is being carried out into making chemicals that can be used to help relieve the side effects of chemotherapy.	
			Part of the process is shown. chemical A + hydrogen	
	(a)	(ii)	Write the formula for ruthenium (II) chloride.	1

Answer $RuCl_2$ $Ru^{2+}(Cl^{-})_2$ Cl_2Ru Ru_1Cl_2

If ionic formula used it must be fully correct

Atomic structure and bonding related to properties of materials Int 2 Marks 2011 15 Fizzy drinks contain acids. These acids can attack the compound calcium hydroxyapatite which is found in tooth enamel. The equation for the reaction is: $Ca_{10}(PO_4)_6(OH)_2(s) + 8H^+(aq) \longrightarrow 6CaHPO_4(s) + 4Ca^{2+}(aq) + 2H_2O(\ell)$ calcium hydroxyapatite Fluoride prevents tooth decay by replacing the hydroxide ions of calcium 1 (b) hydroxyapatite with fluoride ions to form hard wearing calcium fluoroapatite. fluoride ions calcium hydroxyapatite → calcium fluoroapatite $Ca_{10}(PO_4)_6(OH)_2$ Write the formula for calcium fluoroapatite. Answer $Ca_{10}(PO_4)_6F_2$

F can be in brackets(F)₂ Accept any order of symbols Ignore charges Use professional judgment for size of numbers in formula

Chemical changes and structure

	Chemical changes and structure	
	Atomic structure and bonding related to properties of materials	
Int 2		Marks
2013		
4	Tritium is a naturally occurring isotope of hydrogen. It can be represented as	

 $\frac{3}{1}$ **H**

(a)

Complete the table to show the number of particles in an atom of tritium.

Type of particle	Number of particles
proton	
neutron	
electron	

(b)

Hydrogen has three isotopes.

Isotope of hydrogen	Mass number
protium	1
deuterium	2
tritium	3

The relative atomic mass of hydrogen is 1.

Which isotope of hydrogen is the most abundant?

Answers (a)

- Proton = 1 Neutron = 2
 - Electron = 1

All 3 for 1 mark

(b) Protium/ Top one/ 1 1

Dishwasher tablets contain many different types of chemicals.

(c) Phosphate ions, present in some types of dishwasher tablets, react with calcium ions in 1 water forming calcium phosphate.
 Write the formula for calcium phosphate.

Answer $Ca_{3}(PO_{4})_{2}$ $(Ca^{2^{+}})_{3}(PO_{4}^{3^{-}})_{2}$ $(Ca^{2^{+}})_{3}(PO_{4})_{2}$ $Ca_{3}(PO_{4}^{3^{-}})_{2}$ Marks

			Chemical changes and structure Atomic structure and bonding related to properties of materials	
S Gr 2013 10			The nuclide notation for an isotope of hydrogen is ${}^1_1\mathbf{H}$.	Marks
	(a)	(i) (ii)	An isotope of copper has atomic number 29 and mass number 63. Write the nuclide notation for this isotope of copper. How many neutrons are present in this isotope of copper?	1 1
	(b)		A sample of copper was found to contain equal amounts of two isotopes. One has mass number 63 and the other has mass number 65. What is the relative atomic mass of this sample of copper?	1

Answers	(a) i	63 Cu	
		29	
	(a) ii (b)	34 64	

Marks

1

S Gr 2013 11

The table shows information about some useful compounds.

Compound	Formula
Y	Na_3PO_4
ammonia	NH ₃
ammonium nitrate	$\mathbf{NH}_4\mathbf{NO}_3$

(a) (i) Name compound Y.

Answer: Sodium phosphate

			Chemical changes and structure	
			Atomic structure and bonding related to properties of materials	
S Gr				Marks
2013				
16			Metals can be extracted from their ores by different methods.	
	(b)		Mercury can be extracted from the ore cinnabar, HgS.	
		(ii)	Write the formula for the mercury ion in cinnabar.	1

 Hg^{2+} $Hg^{2+}S^{2-}$ $Hg^{2+}S$

Ignore state symbols

			Chemical changes and structure					
			Atomic structure and bonding related to properties of materials					
S Gr 2013				Marks				
17			Nitrogen trifluoride, NF3, is used in the manufacture of plasma screens.					
	(a)		Draw a diagram showing all outer electrons to represent a molecule of nitrogen trifluoride.					
	(b)		The atoms in nitrogen trifluoride are held together by covalent bonds.	1				
			Circle the correct words to complete the sentence.					
			A covalent bond forms when two $\begin{pmatrix} \text{positive} \\ \text{negative} \\ \text{neutral} \end{pmatrix}$ nuclei are held together by their common attraction for a shared pair of $\begin{pmatrix} \text{protons} \\ \text{neutrons} \\ \text{electrons} \end{pmatrix}$.					
	Answer	(a)	Any suitable diagram showing symbols N,F and all outer electrons not just the shared pairs					
			Cross dot (with or without circles) or similar type of diagram, lobes or petals					
			2 non-bonding electrons need to be shown on N, but not in an overlap area Non-bonding electrons needn't be in pairs N and F symbols can be missed					
		(b)	positive electrons					

		Chemical changes and structure		
	Atomic structure and bonding related to properties of materials			
S Gr 2012			Marks	
13		Hydrogen gas is made up of diatomic molecules.		
	(a)	Draw a diagram to show how the electrons are arranged in a molecule of hydrogen, H_2 .	1	

Answer Any suitable diagram showing two hydrogen atoms with two electrons in the overlapped area

S Gr 2012	Chemical changes and structure Atomic structure and bonding related to properties of materials	Marks
15	Potassium hydroxide reacts with sulphuric acid to form potassium sulphate, which can be used as a fertiliser.	
	$KOH(aq) + H_2SO_4(aq) \longrightarrow K_2SO_4(aq) + H_2O(\ell)$	
(d)	Ammonium phosphate is also used as a fertiliser. Write the ionic formula for 1 ammonium phosphate.	1

Answer $(NH_4^+)_3PO_4^{-3-}$

S Gr		Chemical changes and structure Atomic structure and bonding related to properties of materials							Marks	
2012 18	 A student investigated how the concentration of sodium chloride in water affected in freezing point. (a) What type of bond is broken in sodium chloride when it dissolves in water? 									1
	b)	The table shows information about the freezing point of different sodium chloride solutions.							1	
		Concentration of sodium chloride solution (mol/l)	0	0.09	0.18	0.27	0.37	0.46		
		Freezing point (°C)	0	-0.2	-0.5	-0.8	-1.1	-1.5		
		Describe the relationship between the concentration and freezing point.								
	(c)	Predict the freezing point of	of a 0∙55	mol/l so	dium ch	loride sc	olution.			1
			_				°C			

Answer	(a)	Ionic Ionic lattice Ionic network
	(b)	As concentration increases/decreases freezing point decreases/increases
		The freezing point decreases/increases as concentration increases/decreases
		As concentration increases freezing point gets colder

(c) -1.8 to -2.0 inclusive

S Gr 2011 12 Ethanol, for alcoholic drinks, can be made from glucose. (b) The table below shows the relationship between the percentage of ethanol and the

Percentage of ethanol 40 50 60 70 80 (%) **Density** of alcoholic 0.9280.9070.8860.8650.844drink (g/cm^3)

Marks

- (i) Write a general statement describing how the percentage of ethanol affects the density 1 of the alcoholic drink.
 (ii) The density of a particular brand of alcoholic drink is 0.970g/cm³.
- (ii) The density of a particular brand of alcoholic drink is 0.970g/cm³.
 Predict the percentage of ethanol in this alcoholic drink.

Answer (b) i As the percentage increases...the density decreases As the percentage decreases...the density increases Density increases as percentage decreases Density decreases as percentage increases etc

%

density of alcoholic drinks.

(b) ii 20

Heptane can be cracked as shown. aluminium oxide gas mineral wool heat soaked in heptane water

One of the reactions which takes place is:

 $C_7H_{16} \longrightarrow C_4H_{10} + C_3H_6$

Aluminium oxide is used as a catalyst to speed up the reaction. (b) (ii) Write the formula for aluminium oxide.

Answer

If ion charges are shown all must be correct

 $(AI^{3+})_2 (O^{2-})_3 / AI_2^{3+} O_3^{2-}$

S Gr 2011 16

1

Marks

Marks A student set up the following experiment to electrolyse cobalt chloride solution. power supply electrodes cobalt chloride solution

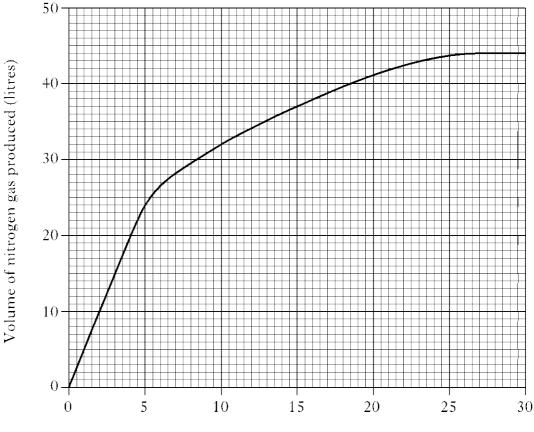
The formula for cobalt chloride is CoCl₂. (c)

What is the charge on the cobalt ion in CoCl₂?

Answer Two positive, 2+, Co²⁺

S Gr 2011 18

Formulae and reaction quantities


Chemical changes and structure Formulae and reaction quantities

Marks

1

Rapid inflation of airbags in cars is caused by the production of nitrogen gas.

The graph gives information on the volume of gas produced over 30 microseconds.

Time (microseconds)

(b)

In some types of airbag, electrical energy causes sodium azide, NaN3, to decompose producing sodium metal and nitrogen gas.

Write a formula equation for this reaction.

Answer $NaN_3 \rightarrow Na + N_2$ Ignore state symbols and attempts to balance. Allow electricity over the arrow.

Chemical changes and structure Formulae and reaction quantities

Rust, iron (III) oxide, that forms on cars can be treated using rust remover which contains phosphoric acid.

When painted on, rust remover changes iron (III) oxide into iron (III) phosphate.

 $Fe_2O_3 + 2H_3PO_4$ \longrightarrow 2FePO₄ + $3H_2O$

1

1

2

1

1

The rust remover contains 250 cm^3 of $2 \text{ mol } l^{-1}$ phosphoric acid. Calculate the number of moles of phosphoric acid in the rust remover.

mol

- (ii) Using your answer in part (i), calculate the mass of iron (III) oxide that will be removed by 250 cm^3 of 2 mol l⁻¹ phosphoric acid.
 - _____ grams

2 x 0.25 Answer (i) = 0.50.5 no working (ii) GFM Fe₂0₃ =160

> Moles of $Fe_20_3 = 0.5/2 = 0.25$ Or mole ratio stated Fe₂0₃ :H₃PO₄ 1:2

(a)

(i)

2

			low follow through using number atomic number used instead of m		(i) if show working			
		If	use ratio 1:1 80g 3 marks if show	working				
Int 2			Chemical changes and structure Formulae and reaction quantities					
2011 3			Hydrogen peroxide is a useful b Over time, the hair dye becomes decomposes forming water and	s less effective as the		Marks		
			The equation for the decomposit	tion of hydrogen per	oxide is:			
			$H_2O_2(aq) \longrightarrow$	$O_2(g)$ +	$H_2O(\ell)$			
	(a) (d)		Balance this equation. When 34g of hydrogen peroxide	e decomposes, 12 litr	es of oxygen is produced.	1 1		
			Calculate the volume of oxygen decomposes.	produced when 1.7g	g of hydrogen peroxide			
			litres					
	Answer	(a)	$2H_2O_2(aq) \rightarrow O_2(g) + 2H_2O(\ell)$					
			or any multiple ignore state symbols in transcr	iption				
		(d)	34 g → 12 l					
			1·7 g → 1.7/34 x 12	1 mark				
			= 0.6	1 mark				
			0.6 on its own – 2 marks					
			OR					
			No moles = $1.7/34 = 0.05$ Vol = 0.05×12 = 0.6	1 mark 1 mark				
			OR					
			34/ 1.7 = 20, then 12 /20 = 0.6	1 mark 1 mark				

S Gr			Chemical changes and structure Formulae and reaction quantities				
2011 17			Urea reacts with water, breaking down to form carbon dioxide and ammonia.				
			$H_2NCONH_2 + H_2O \longrightarrow CO_2 + 2NH_3$ urea				
	(b)		Calculate the mass of ammonia produced, in grams, when 90 g of urea breaks down.	2			
			grams				
		Answers	1 mol 2 mol (½ mark)				
			60 34 (½ mark)				
			90 $90 \times 34 = 51 (1 \text{ mark})$ 60				
			51 on its own = 2 marks				
			$\frac{90}{60}$ = 1.5 mol (1/2 mark)				
			1 mol \longrightarrow 2 mol $(\frac{1}{2} \text{ mark})$ 1.5 mol \longrightarrow 3 mol $(\frac{1}{2} \text{ mark})$				
			Mass = $3 \times 17 = 51$ (½ mark)				
			Use of atomic numbers max 1 mark – Must have working				
			Deduct (1/2) mark for arithmetic error				
			Also accept 50·4, 50·9, 51·3 on its own = 2 marks				

Chemical changes and structure

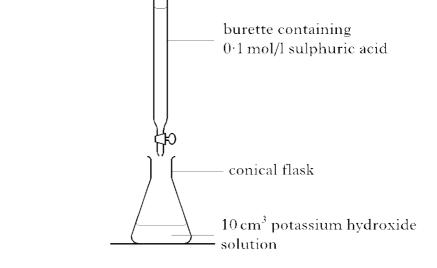
Formulae and reaction quantities

S Gr 2011 20

(a)

(c)

Metal salts can be produced by different methods.


Lead (II) iodide can be produced by reacting lead(II) nitrate solution with sodium iodide solution.

The equation for this reaction is:

$$Pb(NO_3)_2(aq) + NaI(aq) \longrightarrow PbI_2(s) + NaNO_3(aq)$$

(i) Balance the above equation.

Potassium sulphate can be produced by titrating potassium hydroxide solution with dilute sulphuric acid.

(ii) The average volume of sulphuric acid used in the titration is 20 cm^3 .

Calculate the number of moles of sulphuric acid used.

_____ mol

Answers

(a) i $Pb(NO_3)_2(aq) + 2Nal(aq) \longrightarrow Pbl_2(s) + 2NaNO_3(aq)$

Or correct multiples

Moles $n = c \times v$ ($\frac{1}{2} mark$) = 0.1 × 0.02 moles (if 20 used max $\frac{1}{2} mark$) = 0.002 moles ($\frac{1}{2} mark$) 0.002 on its own 1 mark 1

Marks

	(c) ii	Moles $n = c \times v$		(½ mark)					
		= 0.1×0.02 moles (if 20 used max $\frac{1}{2}$ mark)							
		= 0·002 mo	les	(½ mark)					
		0·002 on its own		1 mark					
		Chemical changes and	structure	e					
		Formulae and reaction	quantitie	es					
S Gr									Marks
2012 15	be used as a fertiliser.								
		KOII(aq) +	$\Pi_2 SO_4$	(aq) ——	→	$K_2SO_4(aq)$	Ŧ	$\mathrm{H}_2\mathrm{O}(\ell)$	
(a))	Balance the above equa	ation.						1

Answers

(a) $2KOH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O$

Or correct multiples

		Chemical changes and structure	
		Formulae and reaction quantities	
S Gr 2012			Marks
17		A solution of 0.1 mol/l hydrochloric acid has a pH of 1.	
	(b)	Calculate the number of moles of hydrochloric acid in 50 cm ³ of 0.1 mol/l hydrochloric acid solution.	1

Answer n= c x v

 $n = 0.1 \times 0.05 \quad (1 \text{ mark})$ n = 0.005 moles (1 mark) 0.005 on its own 1 markDeduct 1 if 50 cm³ is not in litres

Chemical changes and structure Formulae and reaction quantities

Aluminium is extracted from the ore bauxite.

The composition of a 250 g magnet is shown.

Metal	aluminium	nickel	cobalt	copper	titanium	iron
% by mass	10	25	20	4	1	40

(i) Calculate the mass, in grams, of aluminium in the magnet. Show your working clearly.

_____ g

25g

(ii) Using your answer to (c)(i), calculate the number of moles of aluminium in the magnet.

Show your working clearly.

____mol

Answer (i)

(ii)

(allow follow through from (c)(i))

(25/27 =) 1 mark 0.926/0.93 1 mark

0.926, 0.93 or 0.9 on its own (1 mark)

If atomic numbers used (1.9) maximum 1 mark

S Gr 2012 21 (c)

Marks

1

Chemical changes and structure
Formulae and reaction quantities

Nitrogen trifluoride, NF3, is used in the manufacture of plasma screens. The equation for the formation of nitrogen trifluoride, NF3, is:

 $N_2 + 3F_2 \longrightarrow 2NF_3$

Calculate the mass of nitrogen trifluoride produced from 7 g of nitrogen.

Show your working clearly.

_____ g

Answers (c) 1 mole $N_2 = 28$ g

 $7/28 = 0.25 \text{ moles} (\frac{1}{2})$

0.25 to 0.5 (1 mole to 2 moles) ($\frac{1}{2}$)

1 mole $NF_3 = 71$ g (½ for **both** formula masses)

71 x 0 5 = $35 \cdot 5 (1/2)$

35.5 on its own 2 marks

 $\begin{array}{rcrcr}
1 & : & 2 & (\frac{1}{2}) \\
28 & : & 142 & (\frac{1}{2}) \\
1 \longrightarrow 142/28 & (\frac{1}{2}) \\
\end{array}$

 $7 \longrightarrow 142 \times 7/28 = \underline{35 \cdot 5} (\frac{1}{2})$

or any other acceptable method

S Gr 2013 17 (c) Marks

Chemical changes and structure Formulae and reaction quantities

S Gr 2013 18

A student investigated the reaction between dilute sulphuric acid and sodium carbonate.

(b) Another experiment involved determining the concentration of sodium carbonate solution by titration.

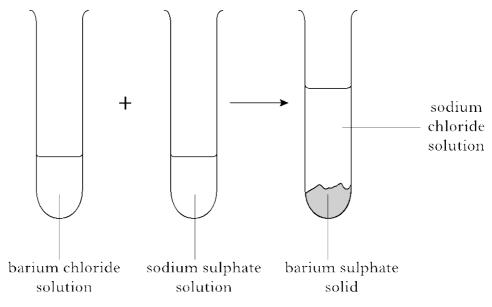
The results showed that 20cm³ of sulphuric acid was required to neutralise the sodium carbonate solution.

(i) Calculate the number of moles of sulphuric acid in this volume.

_____ mol

Answer

Marks


Acids and bases

	Chemical changes and structure	
	Acids and bases	
Int 2		Marks
2011 15	Fizzy drinks contain acids.	
	These acids can attack the compound calcium hydroxyapatite which is found in tooth enamel.	
	The equation for the reaction is:	
	$Ca_{10}(PO_4)_6(OH)_2(s) + 8H^+(aq) \longrightarrow 6CaHPO_4(s) + 4Ca^{2+}(aq) + 2H_2O(\ell)$ calcium hydroxyapatite	
(a)	What will happen to the pH as the tooth enamel is attacked by the acids?	1

Answers	(a)	(pH) will rise towards 7/ (pH) will rise/ (pH) becomes less acidic/ increases/ becomes neutral
		becomes neutral

Chemical changes and structure Acids and bases

A student carried out the following experiment.

(b)

The equation for the reaction is

$$Ba^{2+}(aq) + 2Cl^{-}(aq) + 2Na^{+}(aq) + SO_{4}^{-2-}(aq) \longrightarrow Ba^{2+}SO_{4}^{-2-}(s) + 2Cl^{-}(aq) + 2Na^{+}(aq)$$

- (i) Rewrite the equation showing only the ions which react.
- (ii) What term is used to describe the ions which do not react?

Answer (i) Ba

$$a^{2+}_{(aq)} + SO_4^{2-}_{(aq)} \longrightarrow Ba^{2+}SO_4^{2-}_{(s)}$$

State symbols not required

(ii) Spectator (ions)/spectate

Marks

1

		Chemical changes and structure			
		Acids and bases			
S Gr					Marks
2011					
14					
	(a)	When sulphur dioxide dissolves in water in the atmosphere "acid rain" is produced.			
		Circle) the correct phrase to cor	nplete the s	entence.	1
		Circle) the correct phrase to correct compared with pure water, acid rain contains	(a higher		
		Compared with pure water, acid rain contains	a lower	concentration of hydrogen ions.	
			(the same))	

Answer: a higher

		Chemical changes and structure	
		Acids and bases	
S Gr			Marks
2011			
20		Metal salts can be produced by different methods.	
	(b)	The salt copper (II) nitrate can be produced as shown.	
		\mathbf{X} + 2HNO ₃ \longrightarrow Cu(NO ₃) ₂ + CO ₂ + H ₂ O	1

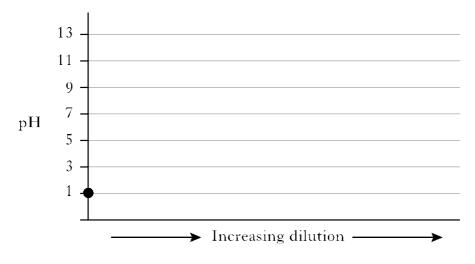
Name substance X.

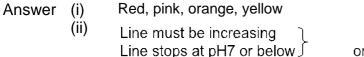
Answer Copper carbonate CuCO₃

	Chemical changes and structure	
	Acids and bases	
S Gr		Marks
2012		
15	Potassium hydroxide reacts with sulphuric acid to form potassium sulphate, which can be used as a fertiliser.	
	$\mathrm{KOH}(\mathrm{aq}) + \mathrm{H}_2\mathrm{SO}_4(\mathrm{aq}) \longrightarrow \mathrm{K}_2\mathrm{SO}_4(\mathrm{aq}) + \mathrm{H}_2\mathrm{O}(\ell)$	
(b)	Name the type of chemical reaction taking place.	1

Answer: neutralisation

Chemical changes and structure Acids and bases


S Gr 2012 17


(a)

A solution of 0.1 mol/l hydrochloric acid has a pH of 1.

- (i) What colour would universal indicator turn when added to a solution of hydrochloric 1 acid?
 - (ii) Starting at pH 1, draw a line to show how the pH of this acid changes when diluted 1 with water.

Marks

or 0