2008 Chemistry

Higher

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Higher Chemistry

General information for markers

The general comments given below should be considered during all marking.
1 Marks should not be deducted for incorrect spelling or loose language as long as the meaning of the word(s) is conveyed.

Example: Answers like 'distilling' (for 'distillation') and 'it gets hotter' (for 'the temperature rises') should be accepted.

2 A right answer followed by a wrong answer should be treated as a cancelling error and no marks should be given.

Example: What is the colour of universal indicator in acid solution?
The answer 'red, blue' gains no marks.
3 If a right answer is followed by additional information which does not conflict, the additional information should be ignored, whether correct or not.

Example: Why can the tube not be made of copper?
If the correct answer is related to a low melting point, 'It has a low melting point and is coloured grey' would not be treated as having a cancelling error.

4 Full marks are usually awarded for the correct answer to a calculation on its own; the part marks shown in the marking scheme are for use when working is given. An exception is when candidates are asked to 'Find, by calculation,'.

5 A half mark should be deducted in a calculation for each arithmetic slip.
6 A half mark should be deducted for incorrect or missing units only when stated in the marking scheme. No marks should be deducted for incorrect or missing units at intermediate stages in a calculation.

7 Where a wrong numerical answer (already penalised) is carried forward to another step, no further penalty is incurred provided the result is used correctly.

8 Ignore the omission of one H atom from a full structural formula provided the bond is shown.
9 With structures involving an -OH or an $-\mathrm{NH}_{2}$ group, a half mark should be deducted if the ' O ' or ' N ' are not bonded to a carbon, ie $\mathrm{OH}-\mathrm{CH}_{2}$ and $\mathrm{NH}_{2}-\mathrm{CH}_{2}$.

10 When drawing structural formulae, a half mark should be deducted if the bond points to the 'wrong' atom, eg

11 A symbol or correct formula should be accepted in place of a name unless stated otherwise in the marking scheme.

12 When formulae of ionic compounds are given as answers it will only be necessary to show ion charges if these have been specifically asked for. However, if ion charges are shown, they must be correct. If incorrect charges are shown, no marks should be awarded.

13 If an answer comes directly from the text of the question, no marks should be given.
Example: A student found that 0.05 mol of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$ burned to give 82.4 kJ of energy.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Name the kind of enthalpy change which the student measured.
No marks should be given for 'burning' since the word 'burned' appears in the text.
14 A guiding principle in marking is to give credit for (partially) correct chemistry rather than to look for reasons not to give marks.

Example 1: The structure of a hydrocarbon found in petrol is shown below.

Name the hydrocarbon.
Although the punctuation is not correct, ' 3 , methyl-hexane' should gain the full mark.

Example 2: A student measured the pH of four carboxylic acids to find out how their strength is related to the number of chlorine atoms in the molecule. The results are shown.

Structural formula	$\mathbf{p H}$
$\mathrm{CH}_{3} \mathrm{COOH}$	1.65
$\mathrm{CH}_{2} \mathrm{ClCOOH}$	1.27
$\mathrm{CHCl}_{2} \mathrm{COOH}$	0.90
$\mathrm{CCl}_{3} \mathrm{COOH}$	0.51

How is the strength of the acids related to the number of chlorine atoms in the molecule?

Although not completely correct, an answer such as 'the more Cl_{2}, the stronger the acid' should gain the full mark.

15 Unless the question is clearly about a non-chemistry issue, eg costs in industrial chemistry, a non-chemical answer gains no marks.

Example: Why does the (catalytic) converter have a honeycomb structure?
A response such as 'to make it work' may be correct but it is not a chemical answer and the mark should not be given.

16 When it is very difficult to make a decision about a partially correct answer, a half mark can be awarded.

17 When marks have been totalled, a half mark should be rounded up.

2008 Chemistry Higher

Marking Scheme

Section A

1	D	11	C	21	D	31	B
2	B	12	D	22	A	32	B
3	A	13	A	23	A	33	C
4	D	14	C	24	B	34	A
5	A	15	B	25	A	35	C
6	D	16	C	26	B	36	D
7	D	17	D	27	C	37	D
8	C	18	B	28	B	38	A
9	A	19	C	29	B	39	C
10	D	20	B	30	C	40	C

	Mark Scheme	Worth $1 / 2$	Worth 0	
$\mathbf{1}$	(a)$\mathbf{C O}_{2}$ covalent molecular (or molecules) or discrete covalent (molecular or molecules)	$\mathbf{1}$	covalent only (discrete) molecular (or molecules) only	mention of sharing electrons or polar
$\mathbf{S i O}_{2}$ covalent network or covalent lattice	$\mathbf{1}$	covalent only (molecular) network or (molecular) lattice only or giant molecule	giant structure	

Mark Scheme			Worth $1 / 2$	Worth 0
2 (a)	esters	1		fats (or oils)
	they react with hydrogen (or are hydrogenated) or they become (more) saturated (or less unsaturated) or they have fewer double bonds (or more single bonds) or the double bonds are broken	1	pack more closely together	become solid (or have higher melting points)
	as an energy source (or more concentrated energy source than carbohydrates) or provide essential fatty acids or carry oil soluble vitamins or good for health with reason given, eg lowers cholesterol	1		good for health without reason given or provide a layer of tissue for insulation or protect vital organs, eg kidneys

Mark Scheme		Worth $1 / 2$	Worth 0
3 (a) a certain volume of KI solution was measured out and the volume made up to $25 \mathrm{~cm}^{3}$ with water (and this was repeated) or $20 \mathrm{~cm}^{3} \mathrm{KI}$ solution added to $5 \mathrm{~cm}^{3}$ of water, $15 \mathrm{~cm}^{3} \mathrm{KI}$ solution to $10 \mathrm{~cm}^{3}$ of water etc.	1		KI solution is diluted or water is added or volume of KI is varied (or changed)
(b) $\begin{align*} & \text { rate }=\frac{1}{\text { time }} \\ & \text { time }=\frac{1}{\text { rate }}=\frac{1}{0.043}(1 / 2)=23.3 \mathrm{~s} \tag{1/2} \end{align*}$ (no units required; deduct $1 / 2$ mark for incorrect units)	1		

Mark Scheme		Worth 1 1/2	Worth 0
4 (a) synthesis gas (syn gas)	1		synthetic gas
(b) or $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHO}$	1		structure of a ketone
(c) (i) any mention of silver being formed (deposited), eg silver mirror (ii) in a water bath or no naked flames or use water heated in a kettle			precipitate forms
(d) primary	1		giving the name of an alcohol, eg butan-1-ol

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Mark Scheme} \& Worth 1 ¹2 \& Worth 0 \\
\hline \begin{tabular}{l}
6 (a) (i) benzene does not (rapidly) decolourise bromine (solution or water) \\
(ii) mention of delocalised electrons (in ring of C atoms) or C to C bonds are all of equal length or planar molecule or bond angles of \(120^{\circ}\) \\
(any 2 points; \(1 / 2\) mark each)
\end{tabular} \& 1

1 \& | the bromine test or using bromine (solution or water) |
| :--- |
| correct structure of benzene without mention of delocalised electrons | \& no C to C double bonds

\hline (b) reforming (or reformation) or dehydrogenation \& 1 \& \&

\hline (c) increases efficiency of burning (or fuel performance or octane number) or cuts down auto ignition (or knocking) \& 1 \& \& to improve the blend or makes petrol more useful or makes petrol more volatile or makes petrol easier to ignite

\hline
\end{tabular}

Mark Scheme		Worth 1 ²	Worth 0
9 (a) weak ($1 / 2$) van der Waals' forces ($1 / 2$) second mark for further clear explanation of origins of van der Waals' forces along the lines of instantaneous (or momentary or nonpermanent) dipoles (or attractions) ($1 / 2$) caused by movement of electrons ($1 / 2$)	2	molecules are non-polar	
(b) (i) to saturate the (porous) carbon rods with (hydrogen) gas or the gas trapped in the carbon rods leads to an error or to steady the current (ii) $\mathrm{Q}=\mathrm{I} \times \mathrm{t}=10 \times 60 \times 0.30=180 \mathrm{C}(1 / 2)$ $1 \mathrm{~mol} \mathrm{H}_{2}$ needs 2 moles of electrons $(1 / 2)=2 \times 96500 \mathrm{C}(1 / 2)$ $180 \mathrm{C} \quad \rightarrow \quad \frac{2 \times 180}{2 \times 96500}=0.00187 \mathrm{~g}(1 / 2)$ (no units required; deduct $1 / 2$ mark for incorrect units)	2	the use of 96500 C	to ensure no impurities or to ensure the circuit (or apparatus) is working or to purify the gas
(c) $\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=10^{-14}(1 / 2)$ $\left[\mathrm{OH}^{-}\right]=10^{-13} \mathrm{~mol} \mathrm{l}^{-1}(1 / 2)$ (no units required; deduct $1 / 2$ mark for incorrect units)	1		

	Mark Scheme	Worth $1 / 2$	Worth 0
$\mathbf{1 0}$	(a)any suitable indication of point at which curves start to level off on concentration axis, eg by a vertical line or arrow	$\mathbf{1}$	
	(b)the ratio of moles of reactant (gas): moles of product (gas) is $1: 1$ or the number of (gaseous) molecules is the same on both sides of the equation	$\mathbf{1}$	
	(c)propene and cyclopropane curves both level off at the same concentrations as in graph on left hand page; ignore time axis	$\mathbf{1}$	

Mark Scheme			Worth 1 ²	Worth 0
11 (a)	alcohols do not contain OH^{-}(hydroxide) ions (or the OH in alcohols is not ionic) or alkalis contain OH^{-}(hydroxide) ions (or the OH is an ion in alkalis)	1	alcohols do not ionise in water	alcohols are neutral or alkalis ionise water
	potassium iodide contains iodide ions (or potassium iodide is ionic) ($1 / 2$) iodine molecules (or iodine the element) forms the blue/black colour with starch (1/2)	1	potassium iodide is a compound or iodine is an element	the iodine in a compound is different

Mark Scheme			Worth 1 1/2	Worth 0
$12 \quad \text { (a) }$	the idea that the shape of the reactant (substrate) molecule must fit the enzyme or lock and key diagram(s)	1	the active sites on the enzyme only accepts certain reactant (substrate) molecules	enzymes are specific
(b)	$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}(\mathrm{aq})$ $\rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ $+177.4 \mathrm{~kJ} \mathrm{~mol}^{-1}(1 / 2)$ $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$ $\rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ reverse $+191.2 \mathrm{~kJ} \mathrm{~mol}^{-1}(1 / 2)$ $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ \rightarrow $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ $\times 2$ $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ \rightarrow $-438.6 \mathrm{~kJ} \mathrm{~mol}^{-1}(1 / 2)$ answer $=-202.6 \mathrm{~kJ} \mathrm{~mol}_{2} \mathrm{O}(\mathrm{l})$ $\times 2$ $-87.6 \mathrm{~kJ} \mathrm{~mol}^{-1}(1 / 2)$ (deduct $1 / 2$ mark for incorrect addition based on numbers used; no units required; deduct $1 / 2$ mark for incorrect units)	2		

Mark Scheme				Worth 1 1/2	Worth 0
15	(i)	$\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$	1		
		sodium chloride will cause rusting	1		damages the engine (or paintwork)
(b)	butane		1		

Mark Scheme		Worth $1 / 2$	Worth 0
16 (a)	1		
(b) methanal or 2, 2-demethylpropanal or formaldehyde	1		
(c) water is not a product of the reaction or no small molecule produced or it is an addition reaction	1		water is not involved in the reaction

[END OF MARKING INSTRUCTIONS]

