

2007 Chemistry

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2007

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Higher Chemistry

General information for markers

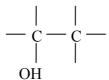
The general comments given below should be considered during all marking.

1 Marks should **not** be deducted for incorrect spelling or loose language as long as the meaning of the word(s) is conveyed.

Example: Answers like 'distilling' (for 'distillation') and 'it gets hotter' (for 'the temperature rises') should be accepted.

2 A right answer followed by a wrong answer should be treated as a cancelling error and no marks should be given.

Example: What is the colour of universal indicator in acid solution?


The answer 'red, blue' gains no marks.

3 If a right answer is followed by additional information which does not conflict, the additional information should be ignored, whether correct or not.

Example: Why can the tube not be made of copper?

If the correct answer is related to a low melting point, 'It has a low melting point and is coloured grey' would **not** be treated as having a cancelling error.

- 4 Full marks are usually awarded for the correct answer to a calculation on its own; the part marks shown in the marking scheme are for use when working is given. An exception is when candidates are asked to 'Find, by calculation,'.
- 5 A half mark should be deducted in a calculation for each arithmetic slip.
- 6 A half mark should be deducted for incorrect or missing units **only when stated in the marking scheme**. No marks should be deducted for incorrect or missing units at intermediate stages in a calculation.
- 7 Where a wrong numerical answer (already penalised) is carried forward to another step, no further penalty is incurred provided the result is used correctly.
- 8 Ignore the omission of one H atom from a full structural formula provided the bond is shown.
- 9 With structures involving an OH or an NH_2 group, a half mark should be deducted if the 'O' or 'N' are not bonded to a carbon, ie OH–CH₂ and NH_2 –CH₂.
- 10 When drawing structural formulae, a half mark should be deducted if the bond points to the 'wrong' atom, eg

- 11 A symbol or correct formula should be accepted in place of a name **unless stated otherwise in the marking scheme**.
- 12 When formulae of ionic compounds are given as answers it will only be necessary to show ion charges if these have been specifically asked for. However, if ion charges are shown, they must be correct. If incorrect charges are shown, no marks should be awarded.

13 If an answer comes directly from the text of the question, no marks should be given.

Example: A student found that 0.05 mol of propane, C_3H_8 burned to give 82.4 kJ of energy.

 $C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(l)$

Name the kind of enthalpy change which the student measured.

No marks should be given for 'burning' since the word 'burned' appears in the text.

14 A guiding principle in marking is to give credit for (partially) correct chemistry rather than to look for reasons not to give marks.

Example 1: The structure of a hydrocarbon found in petrol is shown below.

$$CH_{3} = CH_{2} = CH_{2} = CH_{2} = CH_{2} = CH_{2} = CH_{3}$$

Name the hydrocarbon.

Although the punctuation is not correct, '3, methyl-hexane' should gain the full mark.

Example 2: A student measured the pH of four carboxylic acids to find out how their strength is related to the number of chlorine atoms in the molecule. The results are shown.

Structural formula	pН
CH ₃ COOH	1.65
CH ₂ ClCOOH	1.27
CHCl ₂ COOH	0.90
CCl ₃ COOH	0.51

How is the strength of the acids related to the number of chlorine atoms in the molecule?

Although not completely correct, an answer such as 'the more Cl_2 , the stronger the acid' should gain the full mark.

15 Unless the question is clearly about a non-chemistry issue, eg costs in industrial chemistry, a non-chemical answer gains no marks.

Example: Why does the (catalytic) converter have a honeycomb structure?

A response such as 'to make it work' may be correct but it is not a chemical answer and the mark should not be given.

- 16 When it is very difficult to make a decision about a partially correct answer, a half mark can be awarded.
- 17 When marks have been totalled, a half mark should be rounded up.

2007 Chemistry Higher

Marking Scheme

Section A

1	В	11	С	21	С	31	С
2	А	12	В	22	В	32	В
3	D	13	С	23	D	33	D
4	С	14	А	24	В	34	С
5	С	15	В	25	D	35	А
6	В	16	С	26	D	36	В
7	С	17	D	27	С	37	D
8	А	18	А	28	В	38	А
9	D	19	А	29	А	39	С
10	А	20	С	30	С	40	D

		Mark Scheme		Worth ¹ / ₂	Worth 0
1	(a)	Electronegativity	1		
	(b)	Decreases or gets smaller	1		
	(c)	Bigger atom or larger size or more electron shells or outer electron is further from the nucleus (or protons) (1) Second mark for a further clear explanation, eg inner electrons (electron shells) reduce the attraction between the nucleus and the outer electron or Inner electrons (electron shells) shield (screen) the outer electron from the attraction of the nucleus (1)	2	With regard to second mark Less attraction or outer electron not attracted so much or because of the shielding (screening)	

	Mark Scheme	Worth ¹ / ₂	Worth 0	
2 (8	Reforming	1		
(1	$\begin{array}{ccc} H & H & H \\ H - C - C - C \\ H & H \\ \end{array}$ (Accept full or shortened structural formula)	1		
(0	Any use for Kevlar, eg making ropes or making bullet-proof vests or making jackets for fencers or making clothing for motorcyclists or in aircraft wings or to line aircraft holds or in car tyres or body armour or kayaks, etc.	1		

			Mark Scheme		Worth ½	Worth 0
3		or ³ ₁ H	$\rightarrow \frac{3}{2} \text{He} + \frac{0}{-1} \text{e or } e^{-} \text{ or } e \text{ or } \beta$ $\rightarrow ^{3} \text{He} + \frac{0}{-1} e^{-} \text{ or } e^{-} \text{ or } e \text{ or } \beta$ the any charge on He; accept numbers on rhs)	1		
	(b)	(i)	Rate of formation of tritium = rate of (beta) decay of tritium or tritium is being replaced as fast as it decays or tritium is in (dynamic) equilibrium or similar	1	Tritium is being formed as well as decaying (without indication that the rates are the same)	Tritium is always being formed or tritium has a long half-life or rate of rainfall is equal to rate of formation of tritium
		(ii)	Clear identification of 3 half-lives (½) 3 x 12.3 = 36.9 years (½) (Deduct ½ for no or incorrect units; deduct ½ for negative sign)	1	36 years 9 months	

			Mark Scheme		Worth ½	Worth 0
4	(a)	(i)	Synthesis gas (syn gas)	1		
		(ii)	4 (mol)	1		
	(b)	(i)	Negative	1		
		(ii)	Time (¹ / ₂) and volume of hydrogen (gas) (¹ / ₂) (deduct ¹ / ₂ for each additional measurement; ignore current)	1		Volume alone or mass of hydrogen or amount of hydrogen

		Mark Scheme	Worth ¹ / ₂	Worth 0	
5	(a)	Endothermic	1		
	(b)	E = mc Δ T 45 = 0·2 × 4·18 × Δ T (½) Δ T = 53.8 °C (53 or 54) (½) (Units not required; deduct ½ for incorrect units; deduct ½ for negative sign)	1	ΔT = 0.053 or 0.054	

			Mark Scheme		Worth ¹ / ₂	Worth 0
6	(a)	(i)	Purple (pink) to colourless or purple (pink) disappears (goes away)	1	purple to clear or decolourises (goes colourless)	colourless to purple or any colour to colourless or purple to any colour
		(ii)	Temperature measured during heating is only roughly measured or because the temperature may continue to rise (change) when you stop heating or because the temperature at the end is measured accurately or there might be a time delay between heating and carrying out the experiment or during heating, the temperature of the solution may rise too quickly or because the temperature goes up when you add the oxalic acid or addition of the oxalic acid may cool the solution	1		
	(b)	or moi or moi activat	molecules (particles) have enough energy to collide successfully re molecules have sufficient energy to react re molecules with (kinetic) energy greater than the tion energy pt clearly labelled additions to the diagram)	1	molecules collide with greater energy (harder) or more successful collisions	more collisions or molecules collide more often or molecules move faster

		Mark Scheme	Worth ¹ / ₂	Worth 0	
7	(a)	Answer to indicate that magnesium hydroxide is insoluble but calcium chloride is soluble, eg magnesium hydroxide is a solid or it precipitates out (can be filtered off)	1		Calcium chloride is a liquid
	(b)	Neutralisation	1		
	(c)	Indication in words or via arrow on diagram that the chlorine produced can be recycled (1) water from the neutralisation can be recycled (1) sea water is free or cheap or plentiful or renewable or similar (1) can sell other products or there are useful biproducts (1) (Any 2 out of 3)	2	Reactants can be recycled or reactants are cheap (easy to find)	Process is cheap or process uses raw materials or process uses sea water

Mark Scheme	Worth ½	Worth 0
(d) $Q = I \times t = 200\ 000 \times 60$ = $1.2 \times 10^7 \text{ C} (\frac{1}{2})$		
1 mol Mg needs 2 mols of electrons (1) $2 \times 96500 \text{ C}$ (1/2)	the use of 96 500 C	
$1.2 \times 10^7 \text{ C} \rightarrow \frac{24.3 \text{ x } 1.2 \times 10^7}{2 \times 96500} $ (½)		
= 1.5 kg (½)		
(no units required; deduct ½ for incorrect units; accept correct answer in g; deduct ½ for using 24 as relative atomic mass of Mg)	3	

Mark Scheme		Worth ½	Worth 0
8 (a) Ethanoic (acetic) acid	1		
 (b) (i) Concentrated sulphuric acid (accept H₂ SO₄ with correct state symbol) (ii) answer to indicate use of condenser, eg paper towel soaked in cold water wrapped around (mouth of) test tube or cold finger inserted inside test tube or similar or use of cotton wool plug 	1	(dilute) sulphuric acid or $H_2SO_4(aq)$ or H_2SO_4	Use of a paper towel alone or stopper (plug) the tube
(c) 1 mol alcohol \rightarrow 1 mol ester $88 \text{ g} \rightarrow 130 \text{ g} (\frac{1}{2})$ $4 \cdot 0 \text{ g} \rightarrow \frac{4 \cdot 0 \times 130 \text{ g}}{88} \text{ g} = 5.9 \text{ g} (\frac{1}{2})$ $65 \% \text{ yield} = \frac{65 \times 5.9}{100} (\frac{1}{2}) = 3.8 \text{ g} (\frac{1}{2})$ (No units required; deduct $\frac{1}{2}$ for incorrect units)	2		

			Mark Scheme		Worth ¹ / ₂	Worth 0
9	(a)	(i)	One we need to get in the food we eat (from our diet) or one that the body cannot manufacture (make)	1		Essential for life or needed for the body to function or vital to make protein
		(ii)	11	1		
	(b)	Peptic	le link correctly identified	1		
	(c)		CH ₃ O H CH ₂ O H H H H H H H H H H	1		

		Mark Scheme		Worth ½	Worth 0
10	(a)	experiment 2 curve initial gradient steeper than experiment 1 (½) curve levels off at approximately same volume as experiment 1 (½) experiment 3 curve initial gradient less steep than experiment 1 (½) levels off at approximately half final volume of experiment 1 (½)	2		
	(b)	0.01 mol acid used (1/2)			
		1: 1 mole ratio (1/2)			
		$0.01 \text{ x } 24.3 \text{ g Mg required} = 0.24 \text{ g } (\frac{1}{2})$			
		0.5 - 0.24 = 0.26 g Mg unreacted (1/2)	2		
		or			
		0.01 mol acid used (1/2)			
		no. of moles of Mg = $\frac{0.50}{24.3}$ = 0.02 mol (½)			
		$0.02 - 0.01 \text{ mol} = 0.01 \text{ mol unreacted } (\frac{1}{2})$			
		= 0.01 x 24.3 = 0.24 g Mg unreacted (1/2)	2		
		(No units required; deduct 1/2 for incorrect units)			

			Mark Scheme		Worth ½	Worth 0
11	(a)	(i)	$2NH_3 + 5/2O_2 \rightarrow 2NO + 3H_2O$ (accept multiples)	1		
		(ii)	In different state from reactants	1		Catalyst is different from reactants
		(iii)	Increases	1	Equilibrium shifts to right	
	(b)	(i)	$1 \mod \text{Cu}(\text{NO}_{3})_{2} \rightarrow 2 \mod \text{NO}_{2} (\frac{1}{2})$ $187.5 \text{ g} (\frac{1}{2}) \rightarrow 481$ $2 \cdot 0 \text{ g} \rightarrow \frac{2 \cdot 0 \times 48}{187.5} (\frac{1}{2}) = 0.51 \text{ litres} (\frac{1}{2})$ or $1 \mod \text{Cu}(\text{NO}_{3})_{2} \rightarrow 2 \mod \text{NO}_{2} (\frac{1}{2})$ no. of moles of $\text{Cu}(\text{NO}_{3})_{2} = \frac{2 \cdot 0}{187.5} = 0.107 \text{ mol}$ $0.107 \mod \rightarrow 0.107 \times 48 (\frac{1}{2}) = 0.51 \text{ litres} (\frac{1}{2})$ (Deduct $\frac{1}{2}$ for no or incorrect units)	2		
		(ii)	Diagram showing any method of condensing the nitrogen dioxide (¹ / ₂) and workable way of collection (¹ / ₂) eg U tube in ice	1		Diagram showing gas bubbling through water

			Mark Scheme		Worth ½	Worth 0
12	(a)	(i)	Structural formula (full or shortened) for 1,1-dichloroethane	1		
		(ii)	Reagent A hydrogen Reagent B chlorine Reagent C hydrogen chloride or hydrochloric acid (Accept formulae)	1	H for hydrogen, Cl for chlorine	
	(b)	ΔH_c hy reverse addition (3 'ser	arbon x 2 = $-394 \text{ kJ} \text{ x 2} = -788 \text{ kJ} (\frac{1}{2})$ ydrogen $-286 \text{ kJ} (\frac{1}{2})$ e ΔH_c ethyne = $+1300 \text{ kJ} (\frac{1}{2})$ on = $+226 \text{ kJ} (\frac{1}{2})$ asible' numbers required for $\frac{1}{2}$ mark for addition based on ing through; no units required; deduct $\frac{1}{2}$ for incorrect units)	2		

			Mark Scheme		Worth ½	Worth 0
13	(a)	which or stro second bondin big di N to H	gen bonds (¹ / ₂) a re strong or strong bonds between ammonia molecules ong intermolecular bonding (¹ / ₂) d mark for further clear explanation of origins of hydrogen ng along the lines of fference in electronegativity between N and H (¹ / ₂) H covalent bonds very polar (¹ / ₂) pt diagram showing above points)	2		
	(b)	(i)	Hydrogenation or addition	1		
		(ii)	$CH_3 - CH_2 - CH_2 - CH_2 - NH_2$ (Accept full or shortened structural formula)	1		

		Mark Scheme	Worth ½	Worth 0	
14	(a)	To increase melting point or to harden the spread or to turn an oil into a spreadable margarine or to prolong shelf-life	1	vegetable oils have low melting points or are runny or to make them more saturated	
	(b)	It is a weak acid	1		
	(c)	$1 \text{ mol Na} \leftrightarrow 1 \text{ mol NaCl}$ $23 \text{ g} \leftrightarrow 58.5 \text{ g} (\frac{1}{2})$ $0.70 \text{ g} \leftrightarrow \frac{0.70 \times 58.5}{23} = 1.78 \text{ g} (\frac{1}{2})$ (No units required; deduct $\frac{1}{2}$ for incorrect units)	1	no. of moles of Na = 0.03	

		Mark Scheme	Worth ½	Worth 0	
15	(a)	$H_2O_2(aq) + 2H^+(aq) + 2I^-(aq) \rightarrow 2H_2O(\ell) + I_2(aq)$ (State symbols not required; accept I ₂ (s) on right hand side of equation; deduct ½ if 2e ⁻ shown on each side)	1		
	(b)	no. of moles of thiosulphate = $0.0050 \ge 0.0149 = 7.45 \ge 10^{-5}$ (½) 2 mol thiosulphate : 1 mol I ₂ (1) no. of moles of I ₂ = ½ x 7.45 x 10 ⁻⁵ = 3.725 x 10 ⁻⁵ (½) 1 mol I ₂ = 2 x 126.9 = 253.8 g (½) mass of I ₂ = 3.725 x 10 ⁻⁵ x 253.8 = 0.00945 g (9.45 x 10 ⁻³ g) (½) (Deduct ½ for no or incorrect units)	3		

[END OF MARKING INSTRUCTIONS]