2006 Chemistry

Higher

Finalised Marking Instructions

© The Scottish Qualifications Authority 2006
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Higher Chemistry

General information for markers

The general comments given below should be considered during all marking.
1 Marks should not be deducted for incorrect spelling or loose language as long as the meaning of the word(s) is conveyed.

Example: Answers like 'distiling' (for 'distillation') and 'it gets hotter' (for 'the temperature rises') should be accepted.

2 A right answer followed by a wrong answer should be treated as a cancelling error and no marks should be given.

Example: What is the colour of universal indicator in acid solution?
The answer 'red, blue' gains no marks.
3 If a right answer is followed by additional information which does not conflict, the additional information should be ignored, whether correct or not.

Example: Why can the tube not be made of copper?
If the correct answer is related to a low melting point, 'It has a low melting point and is coloured grey' would not be treated as having a cancelling error.

4 Full marks are usually awarded for the correct answer to a calculation on its own; the part marks shown in the Marking Instructions are for use when working is given. An exception is when candidates are asked to 'Find, by calculation,'.

5 A half mark should be deducted in a calculation for each arithmetic slip.
6 A half mark should be deducted for incorrect or missing units only when stated in the Marking Instructions. No marks should be deducted for incorrect or missing units at intermediate stages in a calculation.

7 Where a wrong numerical answer (already penalised) is carried forward to another step, no further penalty is incurred provided the result is used correctly.

8 Ignore the omission of one H atom from a full structural formula provided the bond is shown.
9 With structures involving an -OH or an $-\mathrm{NH}_{2}$ group, a half mark should be deducted if the ' O ' or ' N ' are not bonded to a carbon, ie $\mathrm{OH}-\mathrm{CH}_{2}$ and $\mathrm{NH}_{2}-\mathrm{CH}_{2}$.

10 When drawing structural formulae, a half mark should be deducted if the bond points to the 'wrong' atom, eg

11 A symbol or correct formula should be accepted in place of a name unless stated otherwise in the Marking Instructions.

12 When formulae of ionic compounds are given as answers it will only be necessary to show ion charges if these have been specifically asked for. However, if ion charges are shown, they must be correct. If incorrect charges are shown, no marks should be awarded.

13 If an answer comes directly from the text of the question, no marks should be given.
Example: A student found that 0.05 mol of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$ burned to give 82.4 kJ of energy.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Name the kind of enthalpy change which the student measured.
No marks should be given for 'burning' since the word 'burned' appears in the text.
14 A guiding principle in marking is to give credit for (partially) correct chemistry rather than to look for reasons not to give marks.

Example 1: The structure of a hydrocarbon found in petrol is shown below.

Name the hydrocarbon.
Although the punctuation is not correct, '3, methyl-hexane' should gain the full mark.

Example 2: A student measured the pH of four carboxylic acids to find out how their strength is related to the number of chlorine atoms in the molecule. The results are shown.

Structural formula	$\mathbf{p H}$
$\mathrm{CH}_{3} \mathrm{COOH}$	1.65
$\mathrm{CH}_{2} \mathrm{ClCOOH}$	$1 \cdot 27$
$\mathrm{CHCl}_{2} \mathrm{COOH}$	0.90
$\mathrm{CCl}_{3} \mathrm{COOH}$	0.51

How is the strength of the acids related to the number of chlorine atoms in the molecule?

Although not completely correct, an answer such as 'the more Cl_{2}, the stronger the acid' should gain the full mark.

15 Unless the question is clearly about a non-chemistry issue, eg costs in industrial chemistry, a non-chemical answer gains no marks.

Example: Why does the (catalytic) converter have a honeycomb structure?
A response such as 'to make it work' may be correct but it is not a chemical answer and the mark should not be given.

16 When it is very difficult to make a decision about a partially correct answer, a half mark can be awarded.

17 When marks have been totalled, a half mark should be rounded up.

2006 Chemistry Higher

Marking Scheme

Section A

1	A	11	A	21	D	31	B
2	C	12	B	22	B	32	C
3	D	13	A	23	C	33	D
4	B	14	A	24	D	34	D
5	A	15	C	25	A	35	C
6	B	16	B	26	D	36	B
7	D	17	B	27	B	37	A
8	B	18	A	28	A	38	C
9	D	19	B	29	C	39	C
10	C	20	D	30	C	40	B

Mark Scheme		Worth $1 / 2$	Worth 0
1 A - covalent molecular solid $1 / 2$ D - covalent network solid $1 / 2$ C - ionic $1 / 2$ B - metallic $1 / 2$	2		
2 (a) number of protons increases or increased atomic number or greater nuclear charge (pull) or greater pull on outer electrons or increased nuclear field strength	1		increased number of electrons or larger nucleus or stronger nucleus
(b) a fullerene or Buckminster fullerene or $\mathrm{C}_{60}, \mathrm{C}_{70}$ etc	1		
(c) no difference in (electronegativity) values or same (electronegativity) values or both have a value of 3 or same attraction for electrons	1	difference in electronegativity is less than 0.5	similar (small difference) in electronegativity values

Mark Scheme		Worth $1 / 2$	Worth 0
3 (a) carbon dioxide ($1 / 2$) and nitrogen ($1 / 2$)	1		carbon oxide or N in place of N_{2}
(b) molecules absorbed on the surface (active sites) of the catalyst (metal) $1 / 2$ (covalent) bonds weaken or more successful collisions $1 / 2$ reaction occurs or mention of product $1 / 2$ molecules desorb or leave the surface $1 / 2$ (accept above points on suitable diagram)	2		lower activation energy

Mark Scheme	Worth 1/2	Worth 0
$4 \quad$ (a) or $\begin{aligned} \mathrm{n} & =\frac{0.45}{32} \quad 1 / 2 \text { for } 32 \\ & =0.014 \mathrm{~mol} \mathrm{1}^{1 / 2} \end{aligned}$ $\Delta \mathrm{H}=-\frac{4 \cdot 18}{0 \cdot 014} \quad 1 \text { for } 4 \cdot 18$ $=\quad-298 \cdot 6 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad 1 / 2$ (correct sign given in answer $1 / 2$; units not required; deduct $1 / 2$ for incorrect units, eg $\mathrm{kJ} \mathrm{mol} \mathrm{1}{ }^{-1}$, accept kJ)		

Mark Scheme		Worth 1 ²	Worth 0
(b) incomplete combustion of methanol or heat loss (to surroundings, etc) or some loss of methanol due to evaporation (any two - $\mathbf{1}$ mark each)	2		experiment not repeated or human error or impure methanol or water evaporating
5 (a) (i) or shortened formula (ii) fats or oils or glycerides or triglycerides	1 1		
(b) $4 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}(\mathrm{l}) \rightarrow \mathbf{6} \mathrm{N}_{2}(\mathrm{~g})+\mathbf{1 0} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathbf{1 2} \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ or $2 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}(\mathrm{l}) \rightarrow \mathbf{3} \mathrm{N}_{2}(\mathrm{~g})+\mathbf{5} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathbf{6} \mathrm{CO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$ or $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}(1) \rightarrow \mathbf{1} 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathbf{2} 1 / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathbf{3} \mathrm{CO}_{2}(\mathrm{~g})+1 / 4 \mathrm{O}_{2}(\mathrm{~g})$			

Mark Scheme			Worth 1/2	Worth 0
6 (a)	First mark for valid method of measuring rate, eg count how many bubbles ($1 / 2$) in certain time interval ($1 / 2$) or time how long it takes $(1 / 2)$ to form a set number of bubbles $(1 / 2)$ Second mark for valid method of altering temperature, eg repeat experiment with test-tube in water bath or heat solution to different temperatures or repeat experiment at different temperatures or repeat using a water bath	2	time how long it takes for reaction or count the bubbles use a water bath or heat the test tube	heat water to different temperatures
	enzyme (protein, catalyst) denatures or changes shape or active sites altered	1		enzyme dies or doesn't work or destroyed or damaged

Mark Scheme		Worth $1 / 2$	Worth 0
8 (a) to ensure the same volume of gas is used each time or to give a fair test or to ensure sufficient breath has passed through or similar	1		
(b) $\mathrm{H}^{+}(\mathrm{aq})$ ions are needed for the reaction or to provide $\mathrm{H}^{+}(\mathrm{aq})$ ions or to remove O (as water) or to allow the reduction to take place or so the alcohol can be oxidised or to allow chromate to act as oxidising agent	1	allow oxidation or allow redox reaction	so the reaction works or to lower the pH or to react with hydroxide ions or to speed up the reaction or to act as a catalyst
(c) ethanal (acetaldehyde) or ethanoic acid (acetic acid) (accept correct structure)	1	vinegar or alkanal (aldehyde) or alkanoic (carboxylic) acid	

Mark Scheme		Worth $1 / 2$	Worth 0
$9 \quad$ (a) (i) or full structural formula (ii) addition(al)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		
(b) hard-wearing or more like a thermoset or stronger or more rigid or harder or less elastic or melts less easily or durable or longer lasting, etc	1		

Mark Scheme		Worth $1 / 2$	Worth 0
10 (a) $\mathrm{NO}_{3}^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$ (state symbols not required)			
(b) $1 \mathrm{~mol} \mathrm{Cu} \leftrightarrow 1 \mathrm{~mol} \mathrm{SO}_{2} \quad 1 / 2$ $\begin{aligned} & 63.5 \mathrm{~g} \leftrightarrow 24 \text { litre } 1 / 2 \\ & 10 \cdot 0 \mathrm{~g} \leftrightarrow \frac{10 \cdot 0 \times 24}{63 \cdot 5} 1 / 2=3 \cdot 8 \text { litre } \quad 1 / 2 \end{aligned}$ or $\begin{array}{rlr} \mathrm{n} & =\frac{10}{63 \cdot 5} & 1 / 2 \\ & =0 \cdot 16 \mathrm{~mol} & 1 / 2 \\ \text { volume } & =0 \cdot 16 \times 24 & 1 / 2 \\ & =3 \cdot 8 \text { litre } & 1 / 2 \end{array}$ (no units required; deduct $1 / 2$ for incorrect units; accept correct answer in cm^{3})			

Mark Scheme		Worth $1 / 2$	Worth 0
11 (a) 2	1		
(b) ethanoic acid: higher sulphuric acid: lower	$\begin{aligned} & \mathbf{1} \\ & \mathbf{1} \end{aligned}$		
(c) hydrogen bonding 1 due to polar $\mathrm{O}-\mathrm{H}$ bond or as a result of relatively high electronegativity difference between oxygen and hydrogen of $\mathrm{O}-\mathrm{H}$ bond $1 / 2$ mention of attraction between the H of the $\mathrm{O}-\mathrm{H}$ bond and the O of the $\mathrm{C}=0 \quad 1 / 2$ ($\delta+$ and δ - indication would cover the two latter $1 / 2$ marks)		permanent dipole/dipole	ethenoic acid is polar

Mark Scheme		Worth $1 / 2$	Worth 0
12 (a) (i) 2 temp. of $\mathrm{KOH}(\mathrm{aq})$ 3 temp. of HCl (aq) 4 vol. of $\mathrm{HCl}(\mathrm{aq})$ or vol. of $\mathrm{KCl}(\mathrm{aq})$ 5 final (max) temp. of $\mathrm{KCl}(\mathrm{aq})$ (accept average initial temperature and temperature change for 1 mark) (ii) 1 reversed $\quad 1852 \mathrm{~kJ} \mathrm{~mol}^{-1} \frac{1}{2}$ 2 unchanged $\quad-437 \mathrm{~kJ} \mathrm{~mol}^{-1} 1 / 2$ 3 multiplied by $3 \quad-1806 \mathrm{~kJ} \mathrm{~mol}^{-1} 1 / 2$ correct addition $\quad-391 \mathrm{~kJ} \mathrm{~mol}^{-1} 1 / 2$ (3 'sensible' numbers with 2 correct required for $1 / 2$ mark for addition based on following through; no units required; deduct $1 / 2$ for incorrect units; accept kJ)	2		
(b) $2 \mathrm{Na}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$ (state symbols required)	1		$4 \mathrm{Na}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$

Mark Scheme				Worth $1 / 2$
$\mathbf{1 3}$	(a)reaction vessel containing NaOH and $\mathrm{CH}_{3} \mathrm{COONa}$ being heated collection by displacement of water using an upturned measuring cylinder (graduated test tube) or collection using gas syringe	$\mathbf{1}$	Worth 0	
	$\mathbf{1}$	use of test tube without graduations		
	(b) ethane or correct formula	$\mathbf{1}$		

Mark Scheme		Worth $1 / 2$	Worth 0
14 (a) (i) $\quad{ }_{95}^{241} \mathrm{Am} \rightarrow{ }_{93}^{237} \mathrm{~Np}+\alpha$ (accept ${ }_{2}^{4} \mathrm{He}$ or ${ }_{2}^{4} \mathrm{He}^{2+}$ in place of α; accept α above arrow) (ii) alpha-particles not very penetrating or absorbed by plastic/paper/air or mass of radioisotope very low or americium oxide insoluble so not absorbed if ingested	1	correct equation with mass numbers and atomic numbers to right of symbols	radiation weak or deflected by paper or not strong enough
(b) formula mass $\mathrm{AmO}_{2}=273 \quad 1 / 2$ $\text { mass americium- } 241=\frac{241 \times 0 \cdot 00025}{273}=0.00022 \mathrm{~g} \quad 1 / 2$ (no units required; deduct $1 / 2$ for incorrect units)	1		

Mark Scheme		Worth $1 / 2$	Worth 0
15 (a) $2 \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$ (ignore state symbols; both charges required)		electrons in equation	
(b) (i) sodium hydroxide (ii) use as a fuel or not finite (renewable) or does not produce CO_{2}, etc	1 1	Na^{+}sol. or OH^{-}sol	sodium
(c) $\begin{aligned} & \mathrm{Q}=\mathrm{I} \times \mathrm{t}=80000 \times 10 \times 60 \times 60 \mathrm{1} / 2 \\ & \quad=288 \times 10^{7} \mathrm{C} 1 / 2 \\ & 1 \mathrm{~mol} \mathrm{Cl}_{2} \leftrightarrow 2 \times 96500 \mathrm{C} 1 / 2 \\ & 288 \times 10^{7} \mathrm{C} \rightarrow \frac{288 \times 10^{7}}{2 \times 96500}=1.49 \times 10^{4} \mathrm{moles} \quad 1 / 2 \\ & \text { mass of } \mathrm{Cl}_{2}=1.49 \times 10^{4} \times 71 \times 10^{-3} 1 / 2=1059 \mathrm{~kg} \mathrm{1/2} \end{aligned}$ (no units required; deduct $1 / 2$ for incorrect units; accept correct answer in g)	3		

Mark Scheme						
$\mathbf{1 6}$	(a)	$\mathrm{C}-\mathrm{O}$	Worth $1 / 2$	Worth 0		
	(b)	(i)	S	$1 / 2$	Q	$1 / 2$
	or	$\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$	$1 / 2$	$\mathrm{C} \equiv \mathrm{C}$	$1 / 2$	$\mathbf{1}$
	(ii)	propan-1-ol	$\mathbf{1}$			

[END OF MARKING INSTRUCTIONS]

