2005 Chemistry

Higher

Finalised Marking Instructions

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments.

Higher Chemistry

General information for markers

The general comments given below should be considered during all marking.
1 Marks should not be deducted for incorrect spelling or loose language as long as the meaning of the word(s) is conveyed.

Example: Answers like 'distiling' (for 'distillation') and 'it gets hotter' (for 'the temperature rises') should be accepted.

2 A right answer followed by a wrong answer should be treated as a cancelling error and no marks should be given.

Example: What is the colour of universal indicator in acid solution?
The answer 'red, blue' gains no marks.
3 If a right answer is followed by additional information which does not conflict, the additional information should be ignored, whether correct or not.

Example: Why can the tube not be made of copper?
If the correct answer is related to a low melting point, 'It has a low melting point and is coloured grey' would not be treated as having a cancelling error.

4 Full marks are usually awarded for the correct answer to a calculation on its own; the part marks shown in the marking scheme are for use when working is given. An exception is when candidates are asked to 'Find, by calculation,'.

5 A half mark should be deducted in a calculation for each arithmetic slip.
6 A half mark should be deducted for incorrect or missing units only when stated in the marking scheme. No marks should be deducted for incorrect or missing units at intermediate stages in a calculation.

7 Where a wrong numerical answer (already penalised) is carried forward to another step, no further penalty is incurred provided the result is used correctly.

8 Ignore the omission of one H atom from a full structural formula provided the bond is shown.
9 With structures involving an -OH or an $-\mathrm{NH}_{2}$ group, a half mark should be deducted if the ' O ' or ' N ' are not bonded to a carbon, i.e. $\mathrm{OH}-\mathrm{CH}_{2}$ and $\mathrm{NH}_{2}-\mathrm{CH}_{2}$.

10 When drawing structural formulae, a half mark should be deducted if the bond points to the 'wrong' atom, eg

11 A symbol or correct formula should be accepted in place of a name unless stated otherwise in the marking scheme.

12 When formulae of ionic compounds are given as answers it will only be necessary to show ion charges if these has been specifically asked for. However, if ion charges are shown, they must be correct. If incorrect charges are shown, no marks should be awarded.

13 If an answer comes directly from the text of the question, no marks should be given.
Example: A student found that 0.05 mol of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$ burned to give $82 \cdot 4 \mathrm{~kJ}$ of energy.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Name the kind of enthalpy change which the student measured.
No marks should be given for 'burning' since the word 'burned' appears in the text.
14 A guiding principle in marking is to give credit for (partially) correct chemistry rather than to look for reasons not to give marks.

Example 1: The structure of a hydrocarbon found in petrol is shown below.

Name the hydrocarbon.
Although the punctuation is not correct, '3, methyl-hexane' should gain the full mark.

Example 2: A student measured the pH of four carboxylic acids to find out how their strength is related to the number of chlorine atoms in the molecule. The results are shown.

Structural formula	$\mathbf{p H}$
$\mathrm{CH}_{3} \mathrm{COOH}$	1.65
$\mathrm{CH}_{2} \mathrm{ClCOOH}$	1.27
$\mathrm{CHCl}_{2} \mathrm{COOH}$	0.90
$\mathrm{CCl}_{3} \mathrm{COOH}$	0.51

How is the strength of the acids related to the number of chlorine atoms in the molecule?

Although not completely correct, an answer such as 'the more Cl_{2}, the stronger the acid' should gain the full mark.

15 Unless the question is clearly about a non-chemistry issue, eg costs in industrial chemistry, a non-chemical answer gains no marks.

Example: Why does the (catalytic) converter have a honeycomb structure?
A response such as 'to make it work' may be correct but it is not a chemical answer and the mark should not be given.

16 When it is very difficult to make a decision about a partially correct answer, a half mark can be awarded.

17 When marks have been totalled, a half mark should be rounded up.

2005 Chemistry Higher

Marking Scheme

Section A

1	D	11	A	21	B	31	B
2	C	12	B	22	C	32	A
3	A	13	D	23	A	33	C
4	B	14	D	24	D	34	D
5	C	15	A	25	C	35	D
6	D	16	C	26	A	36	C
7	A	17	A	27	C	37	B
8	B	18	D	28	A	38	A
9	C	19	C	29	A	39	B
10	B	20	B	30	D	40	B

Mark Scheme			Worth $1 / 2$	Worth 0
3 (a) (i)	primary	1	alkan-1-ol or 1-ols	
(ii)	orange ($1 / 2$) \longrightarrow green or blue ($1 / 2$)	1		
(b) (i)	water bath or heating mantle or reflux	1		
(ii)	46 g ¢ 88 g	$1 / 2$		
	5 g 仡 9.6 g	$1 / 2$		
	$\% \text { yield }=\frac{5.8}{9.6} \times 100$	$1 / 2$		$\frac{5}{5.8} \times 100=86.2$
	$=60.4 \% \text { (accept } 60 \% \text { or } 61 \% \text {) }$ or	1/2		
	moles of ethanol $\quad=0.11$	1/2		
	mass of ethanoic acid $=0.11 \times 88=9.68$	1/2		
	$\% \text { yield }=\frac{5.8}{9.68} \times 100$	1/2		
	= 59.8\% (60\%)	1/2		
	(do not penalise incorrect rounding)			

	Mark Scheme		Worth 1/2	Worth 0
(a) (i) (ii) (b)	moves to left or goes to reverse (or backwards) or favours reactants more moles of gas on right or less (moles of) gas on left or moves in the gas direction or a gas on the r.h.s or $\mathrm{NH}_{2} \mathrm{COO}^{-}\left(\right.$or $\mathrm{H}_{2} \mathrm{NCOO}^{-}$or $\left.\mathrm{NH}_{2} \mathrm{CO}_{2}^{-}\right)$ (accept with no charge shown or charge in incorrect position)	1	suitable explanation without mention of gas, eg pressure or volume alone or water is a gas	reverse reaction speeds up more moles on right

Mark Scheme			Worth 1/2	Worth 0
12		3		

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Mark Scheme} \& Worth \(1 / 2\) \& Worth 0 \\
\hline \begin{tabular}{l}
\(14 \quad\) (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\mathrm{MgO}=\frac{65}{136}=0.48
\] \\
NaCl type structure \\
the greater the ion size, the smaller the lattice enthalpy or the smaller the ion size the greater the lattice enthalpy
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

1 \& | $\frac{136}{65} \rightarrow \mathrm{CsCl}$ |
| :--- |
| the further down the group, the smaller the lattice enthalpy or the further up the group, the greater the lattice enthalpy | \& NaCl type on its own

\hline
\end{tabular}

Mark Scheme		Worth 1/2	Worth 0
15 (continued) (b) (i) to show the blue (or black or purple) colour (at end point) or makes identification of end point easier or provides more visible colour change or as indicator (ii) smaller samples allows averaging of volume or to increase accuracy (or reliability) or to make concordant (or congruent) (iii) $\begin{aligned} {\text { moles } I_{2}} & =\frac{21.4}{1000} \times 0.005 \\ & =0.000107\left(1.07 \times 10^{-4}\right) \end{aligned}$ moles vitamin C in $500 \mathrm{~cm}^{3}=1.07 \times 10^{-3}$ relative formula mass $=176$ $\begin{aligned} \text { mass } & =1.07 \times 10^{-3} \times 176 \\ & =0.188(\text { or } 0.2) \mathrm{g} \end{aligned}$ (no units required; deduct $1 / 2$ for incorrect units)	1 1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$		colour change wrong way around

[END OF MARKING INSTRUCTIONS]

