2014 Biology

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2014
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Biology Intermediate 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Biology Intermediate 2

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

1. There are no half marks. Where three answers are needed for two marks, normally one or two correct answers gain one mark.
2. In the mark scheme, if a word is underlined then it is essential; if a word is (bracketed) then it is not essential.
3. In the mark scheme, words separated by / are alternatives.
4. If two answers are given which contradict one another the first answer should be taken. However, there are occasions where the second answer negates the first and no marks are given. There is no hard and fast rule here, and professional judgement must be applied. Good marking schemes should cover these eventualities.
5. Where questions in data are in two parts, if the second part of the question is correct in relation to an incorrect answer given in the first part, then the mark can often be given. The general rule is that candidates should not be penalised repeatedly.
6. If a numerical answer is required and units are not given in the stem of the question or in the answer space, candidates must supply the units to gain the mark. If units are required on more than one occasion, candidates should not be penalised repeatedly.
7. Clear indication of understanding is what is required, so:

- if a description or explanation is asked for, a one word answer is not acceptable
- if the question asks for letters and the candidates gives words and they are correct, then give the mark
- if the question asks for a word to be underlined and the candidate circles the word, then give the mark
- if the result of a calculation is in the space provided and not entered into a table and is clearly the answer, then give the mark
- chemical formulae are acceptable eg $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$
- contractions used in the Arrangements document eg DNA, ATP are acceptable
- words not required in the syllabus can still be given credit if used appropriately eg metaphase of meiosis.

8. Incorrect spelling is given. Sound out the word(s),

- if the correct item is recognisable then give the mark
- if the word can easily be confused with another biological word then do not give the mark eg ureter and urethra
- if the word is a mixture of other biological words then do not give the mark, eg melluym, melebrum, amniosynthesis.

9. Presentation of data:

- if a candidate provides two graphs or bar charts (eg one in the question and another at the end of the booklet), mark both and give the higher score
- if the question asks for a line graph and a histogram or bar chart is given, then do not give the mark(s). Credit can be given for labelling the axes correctly, plotting the points, joining the points either with straight lines or curves (best fit rarely used)
- if the x and y data are transposed, then do not give the mark
- if the graph used less than 50% of the axes, then do not give the mark
- if 0 is plotted when no data is given, then do not give the mark (ie candidates should only plot the data given)
- no distinction is made between bar charts and histograms for marking purposes. (For information: bar charts should be used to show discontinuous features, have descriptions on the x axis and have separate columns; histograms should be used to show continuous features; have ranges of numbers on the x axis and have contiguous columns)
- where data is read off a graph it is often good practice to allow for acceptable minor error. An answer may be given 7.3 ± 0.1.

10. Extended response questions: if candidates give two answers where this is a choice, mark both and give the higher score.
11. Annotating scripts:

- put 0 in the box if no marks awarded - a mark is required in each box
- indicate on the scripts why marks were given for part of a question worth 3 or 2 marks. A \checkmark or X near the answers will do.

12. Totalling scripts: errors in totalling can be more significant than errors in marking:

- enter a correct and carefully checked total for each candidate
- do not use running totals as these have repeatedly been shown to lead to more errors.

Part Two: Marking Instructions for each Question

Section A

Qu	Expected Answer(s)	Max Mark	Additional Guidance
1	B	1	
2	B	1	
3	A	1	
4	B	1	
5	D	1	
6	C	1	
7	C	1	
8	A	1	
9	C	1	
10	D	1	
11	B	1	
12	A	1	
13	A	1	
14	C	1	
15	C	1	
16	B	1	

Question		Expected Answer(s)	Max Mark	Additional Guidance	
17		D	1		
18		A	1		
19			B	1	
20			D	1	
21			A	1	
22		C	1		
23		D	1		
24			D	1	
25			A	1	

Page 5

Section B

	stion		Acceptable/Expected Answer(s)	Max Mark	Additional Guidance [Unacceptable/Negation]
1	(a)	(i)	B	1	
1	(a)	(ii)	$\frac{\text { Glucose }}{\text { acid }}$ converted/broken down to pyruvic $\mathbf{1}$ $(2 / 4)$ ATP produced $\mathbf{1}$	2	Unacceptable Broken down to ATP Negates 18/36/38 ATP Pi
1	(b)		Glycolysis/muscle contraction/movement/cell division/ protein/ATP synthesis/transmission of nerve impulses/growth (and repair)/ release heat/maintain body temperature Any other suitable cellular activity	1	Unacceptable Diffusion/metabolism/ repair/reproduction/ degradation/temperature/ heat/photosynthesis/ (aerobic) respiration Named exercise Negates $2^{\text {nd }}$ incorrect answer
2	(a)		- lower - speed up - complementary to $\begin{aligned} & 3=2 \text { marks } \\ & 1 / 2=1 \mathrm{mark} \end{aligned}$	2	
2	(b)		Joining/building up molecules OR simple/small to complex/large molecules	1	
2	(c)		It/enzyme/protein/active site changes shape/structure No longer fits with/specific to/complementary to the substrate.	2	Unacceptable Matches/same shape as the substrate Enzyme fits into the active site/denatured/destroyed/ damaged/altered(unless linked to shape) Confusion with enzyme and substrate Negates Killed/died

Question			Acceptable/Expected Answer(s)		Additional Guidance
3	(a)	(i)	Gain in dry mass [units not needed]	1	Unacceptable g/grams grain increase By weighing them Gain in mass
3	(a)	(ii)	As CO_{2} concentration increases the growth/ gain /(dry) mass/increases/gets faster. $0 \cdot 12 \%\left(\mathrm{CO}_{2}\right)$ is the point at which growth levels off.	2	Unacceptable double penalty for e.g grain Stops growing
3	(b)		Temperature/light/pH/day length	1	Unacceptable CO_{2} /heat/warmth/ darkness/space/nutrients/ minerals
3	(c)	(i)	Carbon fixation/Calvin cycle/light independent stage/dark reaction	1	
3	(c)	(ii)	ATP or $\mathrm{H} / \mathrm{H}_{2} /$ hydrogen (carrier) $/ \mathrm{NADP}\left(\mathrm{H}_{2}\right)$ /enzymes	1	Unacceptable atp/energy Negates ADP/Pi any numbers of ATP
4	(a)		Osmosis	1	
4	(b)		Water moves into the (model) cell/bag/salt solution. From a high water concentration to a low water concentration/down a water concentration gradient. OR alternative answer for 2 marks Water moves from a high water concentration outside to a low water concentration inside the (model) cell/bag/salt solution.	2	Accept correct use of hypotonic and hypertonic Unacceptable '.... along a concentration gradient' OR HWC/LWC (without explanation)
4	(c)		0.9	1	
4	(d)		Smaller concentration gradient than shown/lower temperature/wider capillary tube/seal not tight/less water in beaker/bag not fully submerged	1	Accept decreased surface area/smaller model cell Unacceptable volume changes for salt solution

Question		Expected Answer(s)	$\begin{array}{l}\text { Max } \\ \text { Mark }\end{array}$	$\begin{array}{l}\text { Additional Guidance }\end{array}$			
$\mathbf{7}$	(a)	(i)	Sequence/order of bases	$\mathbf{1}$	$\begin{array}{l}\text { Unacceptable } \\ \text { Type of base/named } \\ \text { examples } \\ \text { Amino acids code for } \\ \text { bases }\end{array}$		
$\mathbf{7}$	(a)	(ii)	$\begin{array}{l}\text { Different structure/shape } \\ \text { No/different function }\end{array}$	$\mathbf{1}$	$\mathbf{1}$		
$\mathbf{7}$	(b)	$\begin{array}{l}\text { Lipase/amylase/trypsin/insulin/glucagon/ } \\ \text { catalase/protease } \\ \text { Or any other correct. }\end{array}$	$\mathbf{1}$	$\begin{array}{l}\text { Unacceptable } \\ \text { Different appearance } \\ \text { Different type of protein }\end{array}$			
Unacceptable							
Enzyme/hormone						$]$	(a)
:---							
$\mathbf{8}$							
(b)							

Page 9

Question			Expected Answer(s)	Max Mark	Additional Guidance
9	(a)	(i)	Starch	1	Unacceptable maltose
9	(a)	(ii)	Lubricates/moistens food/mouth /helps swallowing	1	
9	(a)	(iii)	Peristalsis	1	
9	(a)	(iv)	small intestine/duodenum B (both needed)	1	
9	(b)		2.5/2 $1 / 2$	1	
9	(c)		A nitrogen B (simple) sugars/glucose C fats/lipids/oils All correct $=2$ marks $1 / 2$ correct = 1 mark	2	Unacceptable maltose
10	(a)	(i)	None in filtrate/ none filtered from glomerulus	1	Unacceptable Restate all figures No protein in glomerulus Negates Mention of urine Bad Biology
10	(a)	(ii)	Too large (to filter through)	1	Unacceptable Because it is useful
10	(b)		It is (all) reabsorbed/absorbed into blood	1	Unacceptable Absorbed/filtered
10	(c)		Liver	1	Unacceptable kidney

Que	stion	Expected Answer(s)	Max Mark	Additional Guidance
11	(a)	R Greater increase in rate (of oxygen absorption) / evidence of comparison 14 and /or 11.8 (both needed)	1	Negates Wrong numbers
11	(b)	See General Marking Advice No 9. correct plot and line drawn to pass through all points (use their scale)	3	Both R and S plotted - lose 1 mark for Y axis Bar graph - lose 1 or 2 marks
11	(c)	3180	1	
11	(d)	Test more athletes/people (with training programme) Test another training programme	1	Unacceptable "repeat it" Increase length of training programme
11	(e)	bronchus $\mathbf{1}$ bronchioles $\mathbf{1}$	2	

Question			Expected Answer(s)		Additional Guidance
12	(a)	(i)	Less time to reach maximum/ faster/increases instantly/ Antibodies high for longer/ $1^{\text {st }}$ remains constant at peak, $2^{\text {nd }}$ drops immediately	1	Unacceptable $2^{\text {nd }}$ has higher initial concentration Antibody production lasts longer Starts decreasing quicker Antibody concentration higher
12	(a)	(ii)	140-260	1	
12	(a)	(iii)	(Same) subject OR (Same) volume/concentration/mass of substance (P) OR (Same) method of administration	1	Unacceptable Use same substance Amount Volume/concentration/ mass of injection
12	(b)		Lymphocyte	1	
12	(c)		(Each) antibody has a complementary shape to/fits/acts on only one organism/antigen/virus/bacterium	1	Unacceptable Use of 'specific' Confusion with enzymes Disease Certain
12	(d)		Blood cell/macrophage/phagocyte/ monocyte/they engulf (and digest) the (foreign) organisms/virus/bacteria	1	Unacceptable Surround/absorb Bad Biology negates

[END OF MARKING INSTRUCTIONS]

