## 2014 Biology

## Higher

## Finalised Marking Instructions

© Scottish Qualifications Authority 2014
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

## Part One: General Marking Principles for: Biology Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

## GENERAL MARKING ADVICE: Biology Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

1. There are no half marks. Where three answers are needed for two marks, normally one or two correct answers gain one mark.
2. In the mark scheme, if a word is underlined then it is essential; if a word is (bracketed) then it is not essential.
3. In the mark scheme, words separated by / are alternatives.
4. If two answers are given which contradict one another the first answer should be taken. However, there are occasions where the second answer negates the first and no marks are given. There is no hard and fast rule here, and professional judgement must be applied. Good marking schemes should cover these eventualities.
5. Where questions in data are in two parts, if the second part of the question is correct in relation to an incorrect answer given in the first part, then the mark can often be given. The general rule is that candidates should not be penalised repeatedly.
6. If a numerical answer is required and units are not given in the stem of the question or in the answer space, candidates must supply the units to gain the mark. If units are required on more than one occasion, candidates should not be penalised repeatedly.
7. Clear indication of understanding is what is required, so:

- if a description or explanation is asked for, a one word answer is not acceptable
- if the question asks for letters and the candidate gives words and they are correct, then give the mark
- if the question asks for a word to be underlined and the candidate circles the word, then give the mark
- if the result of a calculation is in the space provided and not entered into a table and is clearly the answer, then give the mark
- chemical formulae are acceptable eg $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$
- contractions used in the Arrangements document eg DNA, ATP are acceptable
- words not required in the syllabus can still be given credit if used appropriately eg metaphase of meiosis

8. Incorrect spelling is given. Sound out the word(s),

- if the correct item is recognisable then give the mark
- if the word can easily be confused with another biological term then do not give the mark eg ureter and urethra
- if the word is a mixture of other biological words then do not give the mark, eg mellum, melebrum, amniosynthesis


## 9. Presentation of data:

- if a candidate provides two graphs or bar charts (eg one in the question and another at the end of the booklet), mark both and give the higher score
- if question asks for a line graph and a histogram or bar chart is given, then do not give the mark(s). Credit can be given for labelling the axes correctly, plotting the points, joining the points either with straight lines or curves (best fit rarely used)
- if the $x$ and $y$ data are transposed, then do not give the mark
- if the graph used less than $50 \%$ of the axes, then do not give the mark
- if 0 is plotted when no data is given, then do not give the mark (ie candidates should only plot the data given)
- no distinction is made between bar charts and histograms for marking purposes. (For information: bar charts should be used to show discontinuous features, have descriptions on the $x$ axis and have separate columns; histograms should be used to show continuous features; have ranges of numbers on the $x$ axis and have contiguous columns)
- where data is read off a graph it is often good practice to allow for acceptable minor error. An answer may be given $7 \cdot 3 \pm 0 \cdot 1$

10. Extended response questions: if candidates give two answers where this is a choice, mark both and give the higher score.
11. Annotating scripts:

- put a 0 in the box if no marks awarded - a mark is required in each box
- indicate on the scripts why marks were given for part of a question worth 3 or 2 marks. A $\checkmark$ or $\mathbf{x}$ near answers will do

12. Totalling scripts: errors in totalling can be more significant than errors in marking:

- enter a correct and carefully checked total for each candidate
- do not use running totals as these have repeatedly been shown to lead to more errors


## Part Two: Marking Instructions for each Question

## Section A

| Qu | Expected Answer(s) | Max Mark | Additional Guidance |
| :---: | :---: | :---: | :---: |
| 1 | D |  |  |
| 2 | D |  |  |
| 3 | A |  |  |
| 4 | B |  |  |
| 5 | B |  |  |
| 6 | B |  |  |
| 7 | D |  |  |
| 8 | A |  |  |
| 9 | C |  |  |
| 10 | D |  |  |
| 11 | B |  |  |
| 12 | D |  |  |
| 13 | B |  |  |
| 14 | A |  |  |
| 15 | A |  |  |
| 16 | B |  |  |

Page 4

| Qu | Expected Answer(s) | Max <br> Mark | Additional Guidance |
| :---: | :---: | :---: | :---: |
| 17 | C |  |  |
| 18 | C |  |  |
| 19 | C |  |  |
| 20 | A |  |  |
| 21 | B |  |  |
| 22 | D |  |  |
| 23 | D |  |  |
| 24 | A |  |  |
| 25 | C |  |  |
| 26 | D |  |  |
| 27 | C |  |  |
| 28 | C |  |  |
| 29 | A |  |  |
| 30 | A |  |  |

Page 5

## Section B

| Question |  |  | Acceptable answer(s) | Max Mark | Unacceptable answer | Negates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (a) |  | Glycolysis | 1 |  |  |
| 1 | (b) |  | Pyruvic acid - 3 OR 2x3C OR (2x)3 <br> Substance Q - 4 <br> Citric acid - 6 $3=2,1 \text { or } 2=1$ | 2 | $2 \times 3$ alone | Additional other numbers |
| 1 | (c) |  | Substance R - hydrogen $/ \mathrm{H} / \mathrm{H}_{2}$ (NAD) - ignore <br> Carrier - NAD/NADH/NADH 2 /FAD/FADH/FADH ${ }_{2}$ OR reduced NAD/FAD Both $=1$ | 1 | Reversed answers |  |
| 1 | (d) | (i) | Substance S oxygen $/ \mathrm{O} / \mathrm{O}_{2} / \mathrm{O} 2 / \mathrm{O}^{2}$ | 1 |  |  |
| 1 | (d) | (ii) | Role - final/ultimate/last acceptor of hydrogen OR <br> Joins/combines/bonds/fixes with hydrogen to form water $/ \mathrm{H}_{2} \mathrm{O}$ | 1 | Final hydrogen carrier/receptor Forms with/ converts hydrogen to water |  |


| Question |  | Acceptable answer(s) | Max <br> Mark | Unacceptable answer | Negates |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (e) | Difference <br> More cristae <br> OR crista/cristae/inner membrane <br> have a larger surface area/ more (highly) folded/more densely packed/longer/larger <br> in muscle cell reference to muscle could be in explanation <br> OR converse for skin cell <br> Explanation <br> releases/produces/provides/ needs/requires more energy/ ATP/power <br> OR produces ATP faster for (muscle) contraction/ movement/activity <br> relax not negating | 2 | Many cristae <br> More respiration <br> For muscle cell alone Muscle function <br> Not converse for skin here | Mention of matrix |
| 2 | (a) | Transmitted/passes through OR reflected/bounces back | 1 |  | Other wrong answers |
| 2 | (b) | Pigment $-X$ <br> Justification <br> Absorbs blue and red (light) <br> best/better/more/mainly/at a higher percentage/greater/ higher/more efficiently (than pigment $\mathrm{Y} /$ than green) <br> OR <br> Converse for green Both <br> Violet not negating | 1 | Absorbs red and blue light alone Absorbs very little green light High absorption of red and blue light |  |


| Question |  | Acceptable answer(s) | $\begin{array}{l}\text { Max } \\ \text { Mark }\end{array}$ | $\begin{array}{l}\text { Unacceptable } \\ \text { answer }\end{array}$ | Negates |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | (c) | (i) | $\begin{array}{l}\text { As wavelength/nm increases } \\ \text { to 550 nm absorption also } \\ \text { increases } \\ \text { As wavelength/nm increases }\end{array}$ |  | $\begin{array}{l}\text { Description of } \\ \text { pigment X } \\ \text { further/over 550 nm } \\ \text { absorption decreases } \\ \text { nm needed at least once } \\ \text { 550 needed at least once } \\ \text { no units = 1 }\end{array}$ | $\begin{array}{l}\text { Colours instead of } \\ \text { wavelengths }\end{array}$ |$\}$


| Question |  | Acceptable answer(s) | Max | Unacceptable | Negates |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | (a) | 1.75 g per litre | 1 |  |  |
| 4 | (b) | 10-20 hours | 1 |  |  |
| 4 | (c) | 15.75-16 hours | 1 |  |  |
| 4 | (d) | 20 g | 1 |  |  |
| 5 | (a) | Have a common/the same ancestor OR <br> evolved/started/came from a single/the same species <br> petals/tube/flower length/ shape/size <br> adapted to/suitable for/ changed to fit/made it easier for/varied to suit/evolved to suit/changed to accommodate <br> specialised/specific/each/ different pollinators <br> OR correctly described all three flowers and their pollinators | 2 | Different petals/tube/flowers <br> Encourage/attract |  |
| 5 | (b) | Interspecific | 1 | interspecies |  |
| 5 | (c) | Energy from nectar/food/pollen must exceed/be greater than/ outweigh/> that used in foraging OR searching for/obtaining/ gaining/finding nectar/food/it | 1 | Net energy gain alone <br> Energy gain from food must not be less than energy lost foraging Predators/prey |  |


| Question |  |  | Acceptable answer(s) |  | Unacceptable | Negates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | (a) | (i) | Increases from 0.12 g per 100 g to 0.14 in/by 2006. <br> Decreases to 0.02 in/by 2011. <br> Remains constant (until 2012). <br> OR using differences but must have a correct reference point <br> All $3=2,2=1$, units required only once <br> All figures correct but no <br> units $=1$ <br> Extra data not negating | 2 |  |  |
| 6 | (a) | (ii) | 8:1 | 1 |  |  |
| 6 | (a) | (iii) | 2.5 kg | 1 |  |  |
| 6 | (b) | (i) | 80\% | 1 |  |  |
| 6 | (b) | (ii) | Plants/they produce/contain/ have (Bt)-toxin/poison OR a toxin/poison is produced <br> so (leaf eating) insects deterred/harmed/killed/ damaged/repelled <br> so more photosynthesis/energy <br> OR greater surface area (of leaves) for photosynthesis/ energy <br> for increased yield OR growth OR seed production OR reproduce more | 2 | Substance Has a gene to produce toxin <br> Stops/prevents insects eating leaves |  |
| 6 | (b) | (iii) | 25.6 kg | 1 |  |  |


| Question |  | Acceptable answer(s) | Max Mark | Unacceptable answer | Negates |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | (a) | Many/some/E. colibacteria resistant and survive/live/do not die <br> pass on/breed to pass on/ multiply to pass on <br> resistance/resistance trait OR favourable/beneficial genes/alleles/characteristics/ mutations <br> to offspring/next generation | 2 | Immune (penalise once) Selective advantage alone replicating <br> Strong/better/best/ good |  |
| 7 | (b) | Antibiotic - A <br> Justification - there were more/greater percentage of resistant (bacteria) <br> OR higher resistance <br> at the start/initially/0 months/ already <br> Antibiotic and justification both correct | 1 | It begins higher A reached a higher resistance quicker <br> Many/large percentage <br> Higher resistance throughout <br> After first injection/exposure |  |


| Question |  |  | Acceptable answer(s) | Max <br> Mark | Unacceptable answer | Negates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | (a) |  | Dominant/vigorous/fastgrowing/aggressive/more competitive <br> grasses/plants/species <br> grazed/eaten/removed/kept down/kept in check <br> allows <br> others OR <br> less dominant/less vigorous/ slower-growing/less aggressive/less competitive <br> to survive/grow/thrive/flower/ gain light for photosynthesis | 2 | Stronger/larger/ taller More abundant <br> Killed/kept back/ kept at bay <br> More species to grow <br> Weaker/smaller/ delicate/fragile compete more successfully |  |
| 8 | (b) | (i) | There are survivors/ is diversity the graph does not reach zero <br> at 5-6 (units) of grazing/high grazing intensities/intense grazing <br> OR as grazing (intensity) increases diversity/graph never reaches zero | 1 | The graph levels off at high grazing intensity <br> Extreme grazing intensity |  |
| 8 | (b) | (ii) | Low/underground/basal/deep meristems/growing points/ regions of mitosis <br> OR underground stems OR deep roots OR high powers of regeneration | 1 | Long roots |  |
| 8 | (c) | (i) | spines/thorns/stings | 1 | Spikes/prickles/ Needles Descriptions |  |
| 8 | (c) | (ii) | tannins/nicotine/(hydrogen) cyanide | 1 | alkaloids | resin |


| Question |  |  | Acceptable answer(s) | Max Mark | Unacceptable answer | Negates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | (a) |  | no/lack of sweat glands OR does not sweat OR dry mouth/nasal passages <br> Behavioural/behaviour physiological <br> long/large surface area of tubules/loops of Henle <br> OR more/high ADH <br> All $4=2$, 2 or $3=1$ | 2 | Few/less sweat glands <br> Sweat ducts <br> Dry nose <br> Structural <br> References to glomeruli Big loops of Henle <br> Tubules more permeable Increased ADH |  |
| 9 | (b) | (i) | $\begin{aligned} & \mathrm{B}, \mathrm{C} \text { and } \mathrm{F} \\ & \text { All }=\mathbf{1} \end{aligned}$ | 1 |  |  |
| 9 | (b) | (ii) | $A$ and $D$ <br> Both $=1$ | 1 |  |  |
| 10 | (a) | (i) | Letter - A <br> Reason - wider <br> OR larger diameter/bore/lumen | 1 | Thin walls Larger alone |  |
| 10 | (a) | (ii) | Cambium | 1 | Lateral meristem | Other incorrect answers |
| 10 | (a) | (iii) | Annual (growth) ring | 1 |  | Other incorrect answers |
| 10 | (b) |  | Particular/some/required/certain/ specific genes are switched on/activated <br> AND others are switched off/not switched on/remain switched off OR correct description of genes which are switched on and those which are switched off in a named cell | 1 | Different genes switched on and/or off <br> Unused genes Some are on and some are off Expressed not equivalent to on |  |


| Question |  | Acceptable answer(s) | Max <br> Mark | Unacceptable <br> answer | Negates |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 1}$ | (a) |  | Regulator (gene) <br> switches on/turns on/activates <br> structural gene/gene 2 (and off) |  | Controls structural <br> gene <br> Switches off <br> structural gene <br> Binds to <br> repressor/Y |  |
| $\mathbf{1 1}$ | (b) |  | Structural (gene) <br> All 3 = 2, 2 or 1 = 1 | $\mathbf{2}$ |  |  |
| $\mathbf{1 1}$ | (c) | (i) | Lactose |  |  |  |
| $\mathbf{1 1}$ | (c) | (ii) | Saves/conserves/does not <br> waste/makes efficient use of <br> resources/energy/ATP/amino <br> acids/materials | $\mathbf{1}$ | Protein synthesis |  |


| Question |  |  | Acceptable answer(s) | Max Mark | Unacceptable answer | Negates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | (a) |  | Scales including origin point and enclosing AND labels from table including units (accept seconds and sec for s) Plots AND straight line connection Ignore prediction extension line | 2 | Duration of exercise (s) |  |
| 12 | (b) | (i) | Rate/speed/intensity of pedalling OR resistance/gear/effort OR volume of water intake OR clothing/area of exposed skin <br> OR method of measuring sweat production (or description) OR length of recovery period <br> Any 2 each from a different category | 2 | Bike <br> Person <br> Food intake <br> Air flow Hydration levels Oxygen levels Activity during recovery period Water intake alone |  |
| 12 | (b) | (ii) | Repeat (experiment) with more subjects/people/humans/ different sexes <br> at least one other person suggested | 1 | Repeat alone Repeat experiment Repeat at each duration of exercise |  |
| 12 | (c) |  | Same (surface) area of skin OR per $\mathrm{cm}^{2}$ of skin used measured/used/taken AND size/height/mass/skin surface/ build (of subject) does not matter/could be different | 1 | Different subjects to be compared alone |  |
| 12 | (d) |  | 0.48 mg | 1 |  |  |
| 12 | (e) |  | Any value from $0.45-0.48 \mathrm{mg}$ | 1 |  |  |


| Question |  | Acceptable answer(s) | Max <br> Mark | Unacceptable <br> answer | Negates |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 2}$ | (f) | (i) | Enzymes have an optimum <br> temperature/temperature at <br> which they work best/are <br> denatured by high temperatures/ <br> work slowly at low temperatures |  | Enzymes <br> are temperature <br> dependent/are <br> controlled/affected <br> by temperature/ <br> work within a range <br> of temperatures/ <br> work at a specific <br> temperature/would <br> be denatured |  |
| $\mathbf{1 2}$ | (f) | (ii) | Endotherms/homeotherms <br> endothermic | $\mathbf{1}$ | endoterm |  |


| Question |  | Acceptable answer(s) | Max <br> Mark | Unacceptable <br> answer | Negates |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 3}$ | (a) | (i) | Repeat exactly/same set up/ <br> same experiment/description <br> but include/with/add <br> magnesium/all elements/all <br> minerals/all macro-elements <br> OR without lacking magnesium | $\mathbf{1}$ | Same set up but <br> use magnesium |  |
| $\mathbf{1 3}$ | (a) | (ii) | oxygen for respiration <br> respiration releases/ provides/ <br> produces energy/ATP <br> ATP/energy needed for active <br> uptake/active transport OR <br> uptake against concentration <br> gradient <br> All 3 = 2, 2 or 1 = 1 |  | Breakdown of <br> glucose <br> Aerobic respiration <br> alone <br> Air/it for respiration |  |
| $\mathbf{1 3}$ | (a) | (iii) | Chlorosis <br> OR yellow/chlorotic leaves <br> OR lack of chlorophyll | $\mathbf{1}$ | Seedling/plants |  |
| $\mathbf{1 3}$ | (b) | Haemoglobin/cytochrome/ <br> enzymes | $\mathbf{1}$ | Hydrogen carriers <br> Prevents anaemia |  |  |


| Question |  |  | Acceptable answer(s) | Max Mark | Unacceptable answer | Negates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | (a) | (i) | 12 hours (of light in 24 hours) | 1 |  |  |
| 14 | (a) | (ii) | Young/offspring/calves/babies/ fawns born in spring/summer AND when more/sufficient/ enough food/grass available OR weather favourable OR temperature warmer/ favourable/higher OR to avoid unfavourable weather/temperature/lack of food in winter | 1 | Children/bambis <br> Months when <br> Resources Conditions/climate |  |
| 14 | (b) | (i) | Phototropism | 1 | phototrophism |  |
| 14 | (b) | (ii) | (Shoot grown in) darkness / absence of light/ lacking light | 1 | Low light |  |
| 15 | (a) |  | succession | 1 |  |  |
| 15 | (b) |  | climax (community) <br> climax vegetation not negating | 1 |  |  |
| 15 | (c) |  | Final/climax community has more complex/stable food webs <br> OR larger/higher increased biomass <br> OR greater species diversity/ biodiversity/ number of species/ range of species <br> OR converses must be comparative <br> Any 1 | 1 | Larger food webs References to soil <br> Larger mass <br> Larger plants <br> Higher diversity Increased plant diversity <br> Greater variety of life <br> Dynamic equilibrium Climax would not be succeeded |  |

## Section C

1A
(i)

2 mutagenic agents increase/speed up the rate/frequency/likelihood of/chance of/ occurrence of mutation NOT cause/induce mutation alone

3 they include chemical (agent)s/colchicine/mustard gas/benzene NOT tars/petrochemicals/cigarette smoke etc

4 Radiation OR X-rays OR UV light/radiation
Any 3
Max 3 (from 4)
(ii)
include inversion/substitution/deletion/insertion (any 2) NOTE - accept phonetic endings eg sion for tion
the other two
7 description of one named mutation in terms of bases/nucleotides eg inversion - bases/nucleotides rotate through $180 \%$ swivel/flip round eg substitution - base/nucleotide/named bases substituted/ swapped/replaced by another
eg - insertion base/nucleotide/named base inserted/placed into sequence
eg - deletion base/nucleotide/named base deleted/removed NOTE - could be shown in diagrams but note that bases/nucleotides must be labelled as such or named

8 another description
9 inversion and substitution
change/affect
one/two/a few bases/nucleotides OR one/two codons/triplets OR are point mutations
$\begin{array}{lll}10 \text { deletion and insertion } & 1 \\ \text { change/affect } & \\ \text { all/every/each codon/triplet after mutation/from the mutation on } & \\ \text { OR are frame-shift mutations }\end{array}$
11 point mutations/inversion/substitution change one/two amino acids
12 point mutations/inversion/substitution cause minor changes to the protein structure/function

13 frame shift/deletion/ insertion change all amino acids after the mutation
14 frame shift/deletion/insertion cause major changes
to protein structure/function1

Any 7
Max 7 (from 10)
Total 10
(i) 1 xerophytes live in arid/dry places/habitats
OR in deserts/places with water shortage/places where transpiration rates are high NOT windy/hot

2 xerophytes are adapted to reduce water loss/transpiration/evaporation
NOT stops/prevents water loss/transpiration/evaporation OR low water availability
3 one adaptation, ie reduced surface area/small leaves/few leaves/ leaves reduced to spines/few stomata/thick (waxy) cuticle/reversed stomatal rhythm or description of reversed stomatal rhythm
4 and its explanation, ie reduction of evaporation/transpiration NOT stops/prevents water loss/transpiration/evaporation
5 second adaptation, ie sunken stomata OR stomata in pits OR rolled/ hairy leaves
6 and its explanation, ie reduces air movements/effect of wind
OR traps moist/damp air OR traps water vapour NOT moisture/water OR traps/increases humidity
7 third adaptation, ie root (system) superficial/shallow/near the surface
OR deep roots NOT long roots alone
NOTE long roots to reach deep water $=7$ and 8
OR succulent tissues
8 and its explanation, ie superficial/shallow collects water when available/after rain OR before water evaporates/drains
OR deep roots collect water from deep in ground/water table
OR succulent tissue to store water
Any 6
Max 6 (from 8)
(ii) 9 hydrophytes are plants adapted for life/growth
1
(submerged) in water OR hydrophytes live in water/ponds/lochs/etc
10 one adaptation, floating leaves/air spaces in leaves/air bladders
OR stomata on upper surface
11 and its explanation, ie keep leaves in light/air/on surface
1
OR keeps stomata in the air
12 allowing photosynthesis/gas exchange
1
OR allowing gas exchange
( 10,11 and 12 must match up)
13 a second adaptation, ie flexible stems OR flexible petioles/leaf stalks
OR central(ly located) xylem vessels
OR divided/dissected/feathery/ribbon-like leaves breaking in current/waves/water movement
OR keeps leaf in the light when water level changes
Any 4
Max 4 (from 6)
NOTE - if xerophytes and hydrophytes mixed up, marks 1, 2 and 9 not available but others may be awarded
1 double membrane OR labelled on diagram ..... 1
2 stroma is liquid filled/a gel containing enzymes ..... 1
OR labelled on diagram
3 grana/granum are (stacks of) membranescontaining pigments/chlorophyll OR labelled on diagram
3a If neither points 2 nor 3 awarded
Award 1 mark for clearly labelled diagram with grana and stroma
Max 2 (from 3)
4 carbon fixation/Calvin cycle in stroma NOT dark reaction/light independent stage
5 carbon fixation/Calvin cycle is enzyme-controlledNOT dark reaction/light independent stage
$6 \quad \mathrm{CO}_{2}$ accepted by/joins to/binds to RuBPOR RuBP is $\mathrm{CO}_{2}$ acceptor
7 to form GP (must link to 6) ..... 1
$8 \quad \mathrm{H} /$ hydrogen reduces $\mathrm{CO}_{2}$ to carbohydrate/glucose ..... 1
OR reduces GP
$9 \quad$ ATP used as energy source for/transfers energy to ..... 1 this stage/carbon fixation
10 GP converted to glucose ..... 1
11 GP used to regenerate/is converted to RuBP ..... 1
NOTE - reference to TP as an intermediate not negating
12 carbon atom numbers of GP (3), RuBP (5) and glucose (6) ..... 1
NOTE - Diagrams require arrowheads
Max 6 (from 9)
C Information grouped under chloroplast structure and carbon fixation
At least 1 mark on chloroplast structure
At least 4 marks on carbon fixation
At least 5 marks scored
All four ..... 1
R No mention of respiration or mitochondriaAt least 1 mark on chloroplast structureAt least 4 marks on carbon fixationAt least 5 marks scored
All four1

1 membrane is a fluid mosaic 1
2 phospholipid double/bi layer OR phospholipid is fluid
3 protein distributed in mosaic/patchy pattern OR scattered within phospholipid

3a If neither $\mathbf{2}$ nor $\mathbf{3}$ is awarded
Award 1 mark for membrane contains phospholipid and protein OR correctly labelled diagram

4 pores OR channels in protein

5 Pores/channels make the membrane selectively/semi permeablemembrane

6 Water passes through pores/channels by osmosis
7 from high water concentration/HWC to lower water concentration/LWC OR from hypotonic to hypertonic

## Max 5 (from 7)

8 (cell) wall made of cellulose
$9 \quad$ cellulose fibres
10 (cell) wall fully/freely permeable to water
11 prevents cell bursting when water enters/in hypotonic solutionOR allows cell to become turgid cell

12 provides support for cell/plant
NOTE to gain 3 marks on wall, at least 1 must come from points 8 and 9

## Max 3 (from 5)

C Divided into sections either membrane then wall as above OR structure then function
Structure - 1, 2, 3, 4, 8, 9
Function - 5, 6, 7,10, 11, 12
At least 3 marks on membrane and 2 marks on wall
OR $2 / 3$ structure and $2 / 3$ on function 5 marks scored
All four
R No mention of details of other organelles or active transport
At least 3 marks on membrane and 2 marks on wall
OR $2 / 3$ on structure and $2 / 3$ on function
5 marks scored
All four

