

# **2010 Biology**

# Higher

# **Finalised Marking Instructions**

© Scottish Qualifications Authority 2010

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the External Print Team, Centre Services, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's External Print Team, Centre Services, at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

#### Higher Biology 2010

#### **GENERAL MARKING ADVICE: BIOLOGY**

The marking schemes are written to assist in determining the 'minimal acceptable answer' rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

- 1. There are no **half marks**. Where three answers are needed for two marks, normally one or two correct answers gain one mark.
- 2. In the mark scheme, if a word is <u>underlined</u> then it is essential; if a word is (**bracketed**) then it is not essential.
- 3. In the mark scheme, words separated by / are **alternatives**.
- 4. If two answers are given which contradict one another the first answer should be taken. However, there are occasions where the second answer negates the first and no marks are given. There is no hard and fast rule here, and professional judgement must be applied. Good marking schemes should cover these eventualities.
- 5. Where questions in data are in two parts, if the second part of the question is correct in relation to an incorrect answer given in the first part, then the mark can often be given. The general rule is that candidates should not be penalised repeatedly.
- 6. If a numerical answer is required and units are not given in the stem of the question or in the answer space, candidates must supply the units to gain the mark. If units are required on more than one occasion, candidates should not be penalised repeatedly.
- 7. Clear indication of understanding is what is required, so:
  - if a description or explanation is asked for, a one word answer is not acceptable
  - if the question asks for **letters** and the candidate gives words and they are correct, then give the mark
  - if the question asks for a word to be **underlined** and the candidate circles the word, then give the mark
  - if the result of a calculation is in the space provided and not entered into a table and is clearly the answer, then give the mark
  - **chemical formulae** are acceptable eg CO<sub>2</sub>, H<sub>2</sub>O
  - contractions used in the Arrangements document eg DNA, ATP are acceptable
  - words not required in the syllabus can still be given credit if used appropriately eg metaphase of meiosis
- 8. Incorrect **spelling** is given. Sound out the word(s),
  - if the correct item is recognisable then give the mark
  - if the word can easily be confused with another biological term then **do not** give the mark eg ureter and urethra
  - if the word is a mixture of other biological words then **do not** give the mark, eg mellum, melebrum, amniosynthesis

### 9. Presentation of data:

- if a candidate provides two graphs or bar charts (eg one in the question and another at the end of the booklet), mark both and give the higher score
- if question asks for a line graph and a histogram or bar chart is given, then do not give the mark(s). Credit can be given for labelling the axes correctly, plotting the points, joining the points either with straight lines or curves (best fit rarely used)
- if the x and y data are transposed, then do not give the mark
- if the graph used less than 50% of the axes, then do not give the mark
- if 0 is plotted when no data is given, then do not give the mark (ie candidates should only plot the data given)
- no distinction is made between bar charts and histograms for marking purposes. (For information: bar charts should be used to show discontinuous features, have descriptions on the x axis and have separate columns; histograms should be used to show continuous features; have ranges of numbers on the x axis and have contiguous columns)
- where data is read off a graph it is often good practice to allow for acceptable minor error. An answer may be given  $7 \cdot 3 \pm 0 \cdot 1$
- 10. **Extended response questions:** if candidates give two answers where this is a choice, mark both and give the higher score.

### 11. Annotating scripts:

- put a 0 in the box if no marks awarded a mark is required in each box
- indicate on the scripts why marks were given for part of a question worth 3 or 2 marks. A ✓ or x near answers will do
- 12. **Totalling scripts:** errors in totalling can be more significant than errors in marking:
  - enter a correct and carefully checked total for each candidate
  - do not use running totals as these have repeatedly been shown to lead to more errors

# 2010 Biology Higher

# Marking scheme

# Section A

| 1.  | D | 16. | С |
|-----|---|-----|---|
| 2.  | В | 17. | D |
| 3.  | С | 18. | D |
| 4.  | В | 19. | А |
| 5.  | С | 20. | В |
| 6.  | D | 21. | С |
| 7.  | А | 22. | С |
| 8.  | D | 23. | А |
| 9.  | D | 24. | D |
| 10. | D | 25. | А |
| 11. | А | 26. | В |
| 12. | В | 27. | С |
| 13. | С | 28. | А |
| 14. | В | 29. | С |
| 15. | В | 30. | А |

# **Marking Instructions**

# **Biology Higher 2010**

### Section B

| Quest | ion           | Acceptable Answer                                                                             |   | Unacceptable Answer              | Negates                             |
|-------|---------------|-----------------------------------------------------------------------------------------------|---|----------------------------------|-------------------------------------|
| 1 (a) |               | Protein, phospholipids, porous, selectively<br>All = 2, $3/2 = 1$                             | 2 |                                  |                                     |
| (b)   | (i)           | 46.5 units (+/- 0.5)                                                                          | 1 |                                  |                                     |
|       | ( <b>ii</b> ) | 800 μg per hour                                                                               | 1 |                                  |                                     |
|       | (iii)         | 1. Respiration provides the energy for uptake<br>ATP active transport                         |   | Enzymes not equal to respiration | Uptake of cyanide<br>negates 1 mark |
|       |               | 2. Cyanide reduces respiration (enzymes)<br>inhibits energy/ATP release<br>stops<br>prevents  |   | affects                          |                                     |
|       |               | 3. (More) cyanide gives decreased uptake<br>prevents/stops active transport<br><b>OR</b>      |   |                                  |                                     |
|       |               | Less energy/ATP gives decreased uptake<br>prevents/stops active transport<br>All 3 = 2, 2 = 1 | 2 | Transport alone                  |                                     |

| ( | Question      | Acceptable Answer                                                                                                                                                                     | Mark   | Unacceptable Answer                                       | Negates                                 |
|---|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------|-----------------------------------------|
| 2 | (a)           | (On surface of/in/on) grana/granum                                                                                                                                                    | 1      | chloroplast                                               | Grana of chlorophyll cell               |
|   | (b)           | Species – B (or in explanation)ExplanationMoreaccessory pigmentHigher mass ofcarotene and xanthophyllpigments other than chlorophyll                                                  | 1      | More pigments<br>Higher total mass of pigments            | Chlorophyll a as<br>accessory pigment   |
|   |               | widening/broadening of absorption spectrumORabsorption of lighttransmitted/reflected (by other plants)collectionnot absorbed (by other plants)pick upof other wavelengths/frequencies |        | Most wavelengths<br>Other light waves<br>Wider wavelength |                                         |
|   |               | use of other colours/green light<br>of different/more colours/wavelenghs                                                                                                              |        | Lower light intensity                                     |                                         |
|   | (c) (i)       | A – carbon dioxide CO <sub>2</sub><br>B – glucose/carbohydrate                                                                                                                        | 1<br>1 | TP/Cellulose/Starch                                       |                                         |
|   | ( <b>ii</b> ) | Reduces/reduction of GP/ CO <sub>2</sub>                                                                                                                                              | 1      |                                                           |                                         |
|   | (iii)         | RuBP 5<br>GP 3<br>Both                                                                                                                                                                | 1      |                                                           | 3xC<br>5xC                              |
|   | (iv)          | RuBP       decrease/lower/reduced/less/runs out/used up         GP       increase/higher/more/accumulates         Both                                                                | 1      | RuBP cannot be regenerated                                |                                         |
|   |               | No/less ATP/NADPH/NADPH <sub>2</sub> /H/H <sub>2</sub> /hydrogen                                                                                                                      | 1      | Energy not equal to ATP<br>Products from light stage      | Other wrong Biology<br>Extra substances |

|   | Question |               | Acceptable Answer                                                                                                                                                                                                                      |   | Unacceptable Answer                                                                                                                               | Negates |
|---|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 3 | (a)      | (i)           | 7.5 grams per litre                                                                                                                                                                                                                    | 1 |                                                                                                                                                   |         |
|   |          | ( <b>ii</b> ) | 0.2 grams per litre per minute<br>1/5th grams per litre per minute                                                                                                                                                                     | 1 |                                                                                                                                                   |         |
|   | (b)      | (i)           | <ol> <li>Anaerobic respiration produces ethanol<br/>Anaerobic conditions<br/>Fermentation</li> <li>Oxygen (in air) starts aerobic respiration<br/>stops anaerobic respiration<br/>stops fermentation<br/>Allows Krebs cycle</li> </ol> | 1 | Alcohol<br>Reaction needs anaerobic<br>conditions<br>Aerobic conditions do not<br>produce ethanol                                                 |         |
|   |          | (ii)          | The ethanolhaspoisonedthe yeastItkilledThe concentrationbecome lethal toORall glucose/food/respiratory substrate used up                                                                                                               | 1 | Ethanol has denatured enzymes<br>Toxic waste<br>Resources used up<br>No energy left<br>Not enough glucose left<br>Glucose becomes limiting factor |         |

|   | Question     | Acceptable Answer                                       | Mark | Unacceptable Answer          | Negates                   |
|---|--------------|---------------------------------------------------------|------|------------------------------|---------------------------|
| 4 | (a) (i)      | X – deoxyribose<br>Y – phosphate<br>Both                | 1    | Sugar                        | Inorganic phosphate<br>Pi |
|   | (ii)         | 1. cytosine/C       2. thymine/T       Both             | 1    |                              |                           |
|   | (iii)        | Enzyme(s) <b>OR</b> (DNA) polymerase = $1$<br>ATP = $1$ | 2    |                              | Other wrong enzymes       |
|   | (iv)         | Cell division <b>OR</b> mitosis <b>OR</b> meiosis       | 1    | Cell replication<br>Division |                           |
|   | ( <b>b</b> ) | TAG                                                     | 1    |                              |                           |

|   | Question |               | Acceptable Answer                                                                                                                                                                                                                                           | Mark | Unacceptable Answer | Negates             |
|---|----------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------|---------------------|
| 5 | (a)      | (i)           | Lymphocytes                                                                                                                                                                                                                                                 | 1    |                     | Other wrong answers |
|   |          | ( <b>ii</b> ) | (foreign) antigen/antigentic                                                                                                                                                                                                                                | 1    |                     | Other wrong answers |
|   | (b)      | (i)           | 1:3:4                                                                                                                                                                                                                                                       | 1    |                     |                     |
|   |          | ( <b>ii</b> ) | Black                                                                                                                                                                                                                                                       | 1    |                     |                     |
|   |          | (iii)         | The more tannin /the greater the tannin content<br>the less fungus/leaf area covered/growth/area infected/damage/<br>more (fungal) resistance<br><b>OR</b> use values from the table (must be comparative but units not<br>required)<br><b>OR</b> converses | 1    |                     |                     |
|   |          | (iv)          | (Fresh mass includes) water which can change/vary/fluctuate                                                                                                                                                                                                 | 1    |                     |                     |

| Quest | ion           | decreases from 6 to 3/falls by 3 = 1<br>(when distance increased) from 2500 to 5000m the number<br>decreased from 3 to 2/falls by 1 = 1<br>(500 m to 5000m dances drop from 6 to 2) = 1<br>Units needed at least once | Mark | Unacceptable Answer                                                                                             | Negates |
|-------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------|---------|
| 6 (a) | (i)           |                                                                                                                                                                                                                       | 2    |                                                                                                                 |         |
|       |               | NB ignore references to time for dances                                                                                                                                                                               |      |                                                                                                                 |         |
|       | ( <b>ii</b> ) | 1.25s                                                                                                                                                                                                                 | 1    |                                                                                                                 |         |
|       | (iii)         | 500%                                                                                                                                                                                                                  | 1    |                                                                                                                 |         |
|       | (iv)          | 6s                                                                                                                                                                                                                    | 1    |                                                                                                                 |         |
| (b)   | (i)           | 2.5<br>Not in table OK and ignore any units given                                                                                                                                                                     | 1    |                                                                                                                 |         |
|       | ( <b>ii</b> ) | 3500m                                                                                                                                                                                                                 | 1    |                                                                                                                 |         |
| (c)   | (i)           | Direction <b>OR</b> quantity <b>OR</b> quality (of food)<br>Amount/how big/density/volume/mass/abundance<br>Energy content/richness                                                                                   | 1    | Type of food<br>What the food is<br>Colour<br>Energy gained<br>goodness                                         |         |
|       | (ii)          | Reduces/saves the energy spent in foraging/ finding food<br>OR ensures a net energy gain OR description of net energy gain<br>OR conserves energy by going straight to food source                                    | 1    | Idea of one bee only<br>Time not same as energy<br>Allows bees to save energy as<br>others will bring food back |         |

| Question | Acceptable Answer                                                                                                                                                                                                                                                                            | Mark | Unacceptable Answer                                                                                                                        | Negates |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 7 (a)    | Same genes/sequence of genes/order of genes<br>OR genes match gene for gene                                                                                                                                                                                                                  | 1    | Reference to letters<br>Paired<br>Have chiasmata<br>Same alleles<br>Same size/shape<br>Genes in same positions<br>Same genetic information |         |
| (b) (i)  | Chiasma(ta)                                                                                                                                                                                                                                                                                  | 1    |                                                                                                                                            |         |
| (ii)     | Increases       variation         Produces       variety in species/gametes         Introduces       diversity         Gives       Creates         allows       ensures         provides       OR         Allows       new combinations of alleles         recombination       recombination | 1    | Maintains<br>Helps with<br>Offers<br>Different alleles can be expressed                                                                    |         |
| (c) (i)  | Abcd P only<br>aBCD P onlyAbcD P and Q<br>aBCd P and QAll ticks needed                                                                                                                                                                                                                       | 1    |                                                                                                                                            |         |
| (ii)     | abcD <b>OR</b> ABCd <b>OR</b> reverses<br>Watch for case in letter C/c!                                                                                                                                                                                                                      | 1    |                                                                                                                                            |         |

|   | Question      | Acceptable Answer N                                                                                               |     | Unacceptable Answer                       | Negates                                                  |
|---|---------------|-------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------|----------------------------------------------------------|
| 8 | (a) (i)       | Affected female $X^{R}X^{R}$ and $X^{R}X^{r}$ both = 1                                                            | 1   | RX etc penalise both times                |                                                          |
|   |               | Unaffected female $X^rX^r = 1$<br>Penalise only once for no superscript ie XR, X <sub>R</sub> etc                 | 1   |                                           |                                                          |
|   | ( <b>ii</b> ) | 50%                                                                                                               | 1   |                                           |                                                          |
|   | (iii)         | Substitution<br>One amino acid altered<br>Different amino acid coded for                                          | 1 1 | Slight/minor change                       |                                                          |
|   | (b)           | Controlsthe absorption/uptake of calcium from/by/in the<br>(small) intestineAffects(small) intestinePromotesHelps | 1   | Allows<br>Into the intestine<br>Into bone | Mention of absorption of<br>phosphate<br>Large intestine |

| Question | Acceptable Answer                                                                                                                                                                                                                                                                                                                                                          | Mark | Unacceptable Answer                                                                                  | Negates |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------|---------|
| 9 (a)    | Problem <ul> <li>lose water by osmosis</li> <li>cells/tissue/fish hypotonic to sea/surroundings</li> <li>sea/surroundings hypertonic to cells/tissue/fish</li> <li>higher water concentration in fish than sea/surroundings</li> <li>OR converse</li> </ul>                                                                                                                |      | Not enough water to drink<br>Answers in terms of salt<br>Concentrations<br>Dehydration as water lost |         |
|          | <ul> <li>Fish Physiological <ul> <li>chloride secretory cells secrete/get rid of salt/ions</li> <li>(kidney with) few/small glomeruli</li> <li>low kidney filtration rate</li> <li>slow kidney filtration</li> </ul> </li> <li>Rat Behavioural <ul> <li>Nocturnal/active/feeds at night</li> <li>remain in burrow by day</li> </ul> </li> <li>Rat Physiological</li> </ul> |      | Low volumes of urine<br>Excrete salts                                                                |         |
|          | <ul> <li>no sweat glands/sweating</li> <li>colon/large intestine efficient at absorbing water</li> <li>long loops of Henle OR kidney tubules allow high reabsorption of water</li> <li>dry mouth/nasal passages</li> <li>high level of ADH All 4 = 2, 3/2 = 1</li> </ul>                                                                                                   | 2    | Dry faeces                                                                                           |         |
| (b)      | Allow leaf/plant to float <b>OR</b> make it buoyant OR prevent itsinking OR keeps it at the surface = 1To keep it in light for photosynthesis <b>OR</b> To allow gas exchange/CO2 uptake/transpiration through thestomata = 1                                                                                                                                              | 2    | Close to surface<br>Reference to gases in air spaces<br>Stop stomata flooding                        |         |

| Que   | estion     | Acceptable Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mark | Unacceptable Answer                                                                                 | Negates |
|-------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------|---------|
| 10 (a | a) (i)     | Diameter/size/mass/number/surface area of beads <b>OR</b> type of gel<br><b>OR</b> time tap kept open <b>OR</b> strain/thickness<br>covering/concentration/mass/amount/batch/volume of <i>E.coli</i><br><b>OR</b> same volume of solution collected                                                                                                                                                                                                                                                                                                                                                   | 1    | pH<br>solution in beaker<br>volume of solution                                                      |         |
|       | (ii)       | Same/identical funnel/set up/experiment OR keep everything the<br>same with gel beads uncoated/no<br><i>E. Coli</i> /sterile = 1<br>To show <i>E.coli</i> produced the enzyme/<br>lactose did not beak down alone/<br><i>E.coli</i> is the factor affecting lactose/<br>lactose is broken down by $\beta$ galactosidase = 1<br>OR Same/identical funnel/set up/experiment OR keep everything<br>the same to which water/nothing/no lactose was added = 1<br>To show the substrate was lactose/<br><i>E.coli</i> did not produce product alone/<br>lactose is the inducer of $\beta$ galactosidase = 1 | 2    | Keep everything<br>Replace <i>E. coli</i> with another<br>bacterium<br>Replace lactose with glucose |         |
| (1    | b)         | Scales and labels = 1<br>Plots and line = 1 (straight lines between plots)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2    | Half scale                                                                                          |         |
| (     | <b>c</b> ) | 0.04 grams per minute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1    |                                                                                                     |         |
| (0    | d)         | Repressor joins with lactose/inducer<br>Operator switches on structural gene<br>Structural gene produces enzyme/ $\beta$ galactosidase<br>Time needed to breakdown lactose <b>any</b> 2 = 2 / 1 = 1<br><b>OR</b><br>Enzyme being induced/produced/made/released = 1<br>Time needed to breakdown lactose = 1                                                                                                                                                                                                                                                                                           | 2    |                                                                                                     |         |
| ((    | e)         | Saves/preserves/conserves does not waste energy/ATP<br>OR saves/preserves/conserves/does not waste resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1    |                                                                                                     |         |

|    | Question |               | Acceptable Answer                                                                                                           | Mark | Iark         Unacceptable Answer                   | Negates |
|----|----------|---------------|-----------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------|---------|
| 11 | (a)      | (i)           | 3-4 weeks and 4-5 weeks                                                                                                     | 1    |                                                    |         |
|    |          | ( <b>ii</b> ) | А                                                                                                                           | 1    |                                                    |         |
|    |          | (iii)         | Photosynthesis                                                                                                              | 1    |                                                    |         |
|    |          | (iv)          | Dispersal of seeds/fruits <b>OR</b> flowers (leaf) fall <b>OR</b> decomposition                                             | 1    | Leaf fall/abscission<br>Grazing<br>Starting to die |         |
|    | (b)      |               | length/girth/thickness/width of stem/shoots/roots/internodes<br>OR height/length<br>OR number/length/surface area of leaves | 1    | Growth of<br>size                                  |         |
|    | (c)      |               | (Apical) meristem                                                                                                           | 1    |                                                    | lateral |

| Question | Acceptable Answer                                                                                   | Mark | Unacceptable Answer                                                | Negates    |
|----------|-----------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------|------------|
| 12 (a)   | 2 (a) Gene mutation                                                                                 |      | Inborn error of metabolism<br>Genetic defect<br>Inherited mutation |            |
| (b)      | Gain tyrosine from diet/food<br>AND can be converted to pigment/<br>enzyme 3 still working/present  |      |                                                                    |            |
| (c)      | (c) controls/increases/speeds up/regulates/stimulates metabolic rate/metabolism/metabolic processes |      | Influences<br>Affects                                              | Slows down |

| Question | Acceptable Answer                                                                                                                            |        | Unacceptable Answer                                                          | Negates                                                                 |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| 13 (a)   | B – Nitrogenprotein (synthesis)/enzymes/amino acids/nucleic<br>acids/RNA/DNA/ATP/chlorophyll/NAD/NADPC – MagnesiumAll 3 = 2, 2 = 1           | 2      | Helps use chlorophyll                                                        |                                                                         |  |
| (b)      | Term – Etiolated/etiolation<br>Long stems/internodes<br><b>OR</b> yellow/pale/small/curled/chlorotic leaves<br><b>OR</b> leaves lose pigment | 1<br>1 | Tall and thin on own<br>Shrivelled leaves<br>White leaves<br>Weak and sickly | Additional wrong<br>descriptions eg red/long<br>roots<br>growth stunted |  |

| Question |     | n    | Acceptable Answer                                                                                                                                                                                                                                                                         |   | Unacceptable Answer                                                                                                                             | Negates |
|----------|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 14       | (a) | (i)  | 22.5 <b>OR</b> 23 beetles per $m^2$                                                                                                                                                                                                                                                       |   |                                                                                                                                                 |         |
|          |     | (ii) | Food (supply) <b>OR</b> predators <b>OR</b> disease <b>OR</b> competition for food/<br>space<br>Rainfall/drought/flooding <b>OR</b> temperature <b>OR</b><br>pesticide/insecticide <b>OR</b> named natural disaster eg (forest) fire<br>Both                                              | 1 | Competition<br>General term natural disasters<br>Extreme weather                                                                                |         |
|          |     |      | (Conservation/management of) endangered species/threat of<br>extinction/to see if it might become extinct<br>(Conservation/management of) food species/source<br>(Conservation/management of) raw material species/source<br>Indicate levels of pollution/pollution indicators<br>Any two | 1 | Prevent extinction<br>Help endangered species<br>Indicator species<br>Culling<br>Prevent overhunting<br>Examples of raw material eg<br>medicine |         |

# Section C

| 1A | Write notes on: |
|----|-----------------|
|----|-----------------|

| (i)<br>(ii) |    | ffects of indole acetic acid (IAA);<br>ole of gibberellic acid (GA) in the germination of barley grains. |    |
|-------------|----|----------------------------------------------------------------------------------------------------------|----|
| (i)         | 1  | IAA Stimulates/promotes/increases/causes/needed for cell division/mitosis                                | 1  |
|             | 2  | IAA Stimulates/promotes/increases/causes/needed for cell elongation                                      | 1  |
|             | 3  | IAA Stimulates/promotes/increases/causes/needed for differentiation                                      | 1  |
|             | 4  | IAA causes apical dominance/inhibits (growth of) lateral buds                                            | 1  |
|             | 5  | IAA is important/involved in tropic effects/tropisms/geotroopism/ phototropism                           | 1  |
|             | 6  | IAA causes shoot/plant growth towards light OR description                                               | 1  |
|             | 7  | Low/fall in/decrease in IAA (concentration) causes abscission/leaf fall/flower fall                      | 1  |
|             | 8  | <b>OR</b> converse<br>IAA causes fruit formation/development/growth                                      | 1  |
|             |    | Auxin = IAAMax 6 (from 8)                                                                                |    |
| (ii)        | 9  | GA produced in embryo                                                                                    | 1  |
|             | 10 | GA travels to aleurone layer                                                                             | 1  |
|             | 11 | GA stimulates/induces/results in/switches on gene for production of ( $\alpha$ -)amylase in              | 1  |
|             | 12 | aleurone layer<br>(α-)amylase breaks down/digests starch to maltose                                      | 1  |
|             | 13 | maltose required for respiration/ATP production/to supply energy/ATP (for                                | 1  |
|             | 14 | germination)<br>GA breaks dormancy (of seeds)                                                            | 1  |
|             |    | Gibberellin = GA Max 4 (from 6)<br>Total                                                                 | 10 |

# Notes

| Point 1 -3 | - not controls but penalise only once                       |
|------------|-------------------------------------------------------------|
| Point 5    | – not trophic                                               |
| Point 6    | <ul> <li>not root but not negating</li> </ul>               |
| Point 6    | <ul> <li>not curving/bending</li> </ul>                     |
| Point 11   | - not aleurone layer stimulates enzyme production           |
| Point 13   | <ul> <li>not maltose used as a food source alone</li> </ul> |
| Point 14   | <ul> <li>not promotes germination</li> </ul>                |
| Point 14   | <ul> <li>not buds but not negating</li> </ul>               |
|            |                                                             |

#### **1B** Write notes on:

- (i) endotherms and ectotherms;(ii) temperature regulation in mammals.

| (i)  | 1  | endotherms can regulate/control/maintain their (body) temperature<br>(physiologically) <b>AND</b> ectotherms cannot/ectotherms temperature is dependent on<br>their environment/behaviour | 1 |
|------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | 2  | endotherms derive (most body) heat from respiration/metabolism/chemical reactions                                                                                                         | 1 |
|      | 3  | ectotherms derive/get (body) heat from surroundings/environment <b>OR</b> description of behaviour                                                                                        | 1 |
|      |    | Max 2 (from 3)                                                                                                                                                                            |   |
| (ii) | 4  | temperature monitoring centre/thermoreceptors in hypothalamus<br><b>OR</b> information about temperature detected/received by hypothalamus                                                | 1 |
|      | 5  | nerve message/communication/impulse sent to skin/effectors                                                                                                                                | 1 |
|      | 6  | vasodilation/widening of blood vessels to skin in response to increased temperature <b>OR</b> vasoconstriction/narrowing of blood vessels to skin in response to decreased temperature    | 1 |
|      | 7  | more/less blood to skin/extremities OR less/more blood in body core                                                                                                                       | 1 |
|      | 8  | increased/more OR decreased/less heat radiated from skin/extremities                                                                                                                      | 1 |
|      | 9  | increased temperature/body too hot leads to (increase in) sweat production <b>OR</b> converse                                                                                             | 1 |
|      | 10 | increase in heat loss due to evaporation of (water in) sweat <b>OR</b> converse                                                                                                           | 1 |
|      | 11 | Decrease in temperature causes hair erector muscles to raise/erect hair                                                                                                                   | 1 |
|      | 12 | traps (warm) air <b>OR</b> forms insulating layer                                                                                                                                         | 1 |
|      | 13 | Decrease in temperature causes muscle contraction/shivering which generates heat/raises body temperature                                                                                  | 1 |
|      | 14 | temperature regulation involves/is an example of negative feedback                                                                                                                        | 1 |
|      |    | Max 8 (from 11)                                                                                                                                                                           |   |
|      |    |                                                                                                                                                                                           |   |

### Total

10

# Notes

| Point 1  | <ul> <li>not heat for temperature</li> </ul>                      |
|----------|-------------------------------------------------------------------|
| Point 3  | – must be clear that the behaviour is of an ectotherm             |
| Point 3  | - not their body temperature varies with/changes with environment |
| Point 5  | <ul> <li>sent through blood negates</li> </ul>                    |
| Point 6  | <ul> <li>not blood vasodilates</li> </ul>                         |
| Point 7  | – not heat in body core                                           |
| Point 11 | – not converse                                                    |
| Daint 12 | not trong hoot                                                    |

Point 12 – not traps heat

Ignore references to metabolic rate

2A Give an account of the importance of isolating mechanisms, mutations and natural selection in the evolution of new species.

| 1                         | isolating mechanisms          | prevent<br>are barriers to | gene flow between<br>gene exchange between<br>breeding between | (sub-)populations/groups | 1      |
|---------------------------|-------------------------------|----------------------------|----------------------------------------------------------------|--------------------------|--------|
|                           | <b>OR</b> isolating mechani   | sms split a gene           | mutations being passed                                         | between                  |        |
| C                         | geographic, ecological        | l roproductivo (c          | any two)                                                       |                          | 1      |
| 2<br>3                    | third                         | i, reproductive (a         |                                                                |                          | 1<br>1 |
|                           |                               |                            |                                                                | Max $2$ (from $2$ )      |        |
| 4                         | mutations occur rando         | mlv                        |                                                                | Max 2 (from 3)           | 1      |
| 5                         | different mutations oc        |                            | )population/group                                              |                          | 1      |
| 6                         | Mutations increase/de         |                            |                                                                |                          | 1      |
|                           | <b>OR</b> provide a selective |                            |                                                                |                          |        |
|                           |                               |                            |                                                                | Max 2 (from 3)           |        |
| 7                         | different conditions/h        | hitot/anninanna            | nt aviat fan aa ak (auk )na                                    |                          | 1      |
| 7<br>8                    |                               |                            | nt exist for each (sub-)po<br>ere are different selection      |                          | 1      |
| 0                         | (sub-)population/grou         |                            |                                                                | pressures on each        | 1      |
| 9                         |                               |                            | are able to breed/pass on                                      | (fayourable)             | 1      |
| ,                         | genes/alleles/character       |                            | are usie to sreed, puss of                                     | (luvouluolo)             | 1      |
| 10                        |                               |                            | er many generations                                            |                          | 1      |
| 11                        | (a) new species forme         |                            |                                                                |                          | 1      |
| 12                        | new species are unable        | e to interbreed/l          | preed together to produc                                       | e fertile young          | 1      |
|                           |                               |                            |                                                                | Max 4 (from 6)           |        |
| Co                        | herence                       |                            |                                                                |                          |        |
| •                         |                               | ions OR isolation          | n separate from mutation                                       | and natural selection    |        |
| •                         | At least $1/2$ points on iso  |                            | -                                                              |                          |        |
| •                         | At least $1/2$ points on m    |                            |                                                                |                          |        |
| •                         | And at least 2/3 points o     | · ·                        | <i>2</i>                                                       |                          |        |
| •                         | (must be 5 points in tota     |                            |                                                                |                          |        |
| Al                        | l five points                 | )                          |                                                                |                          | 1      |
|                           | levance                       |                            |                                                                |                          |        |
| •                         | no mention of artificial s    | selection                  |                                                                |                          |        |
| •                         | At least 1/2 points on iso    | olation (Points 1          | - 3)                                                           |                          |        |
| •                         | And at least 1/2 points o     | n mutation (Poir           | (15.4 - 6)                                                     |                          |        |
| •                         | And at least 2/3 points o     | n natural selection        | on (points 7 – 12)                                             |                          |        |
| •                         | must be 5 points in total     |                            |                                                                |                          |        |
|                           | l five points                 |                            |                                                                |                          | 1      |
| Το                        | tal                           |                            |                                                                |                          | 10     |
|                           |                               |                            |                                                                |                          |        |
| Notes                     |                               | 1                          |                                                                |                          |        |
| Point 1                   |                               | population into tr         |                                                                | ach time                 |        |
| Points 1, 5<br>Points 2 a |                               |                            | ation/groups – penalise e                                      | ach time                 |        |
| Points 2 a<br>Point 9     |                               | ples eg river              | or survival of fittest alone                                   |                          |        |
| 1 01111 7                 |                               | Sest mary iduals (         | JI SULVIVAL OF THEST ATOHE                                     |                          |        |

Point 9 – not strongest individuals or su Award points in place most advantageous to candidate

| 2B    | Giv | e an account of the transpiration stream and its importance to plants.                                                                             |   |
|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|---|
|       | 1   | water moves into root (hair cells)by osmosis/from HWC to LWC/down water concentration gradient <b>OR</b> water diffuses into root (hair) cells     | 1 |
|       | 2   | water moves across/enters the cortex by osmosis/from HWC to LWC/down water concentration gradient/via cell walls                                   | 1 |
|       | 3   | water enters/reaches/goes into xylem                                                                                                               | 1 |
|       | 4   | water rises/travels/moves through xylem(vessels)                                                                                                   | 1 |
|       | 5   | cohesion is attraction between/sticking together of water molecules                                                                                | 1 |
|       | 6   | adhesion is attraction between water (molecules) and xylem (walls)/sticking of water molecules to xylem                                            | 1 |
|       | 5a  | adhesion and cohesion named (if neither 5 nor 6 is scored)                                                                                         | 1 |
|       | 7   | water moves into leaf cells by osmosis/from HWC to LWC /down a water concentration gradient <b>OR</b> water diffuses into leaf cells               | 1 |
|       | 8   | water evaporates into (leaf) air spaces                                                                                                            | 1 |
|       | 9   | water vapour diffuses from leaf surfaces/ lost through stomata                                                                                     | 1 |
|       |     | Max 6 (from 9)                                                                                                                                     |   |
|       | 10  | water (provides raw material) for photosynthesis/photolysis<br>OR water provides turgidity/keeps cells turgid<br>OR causes cooling/cools the plant | 1 |
|       |     | OR minerals/nutrients/ions supplied/transported (any 1)                                                                                            |   |
|       | 11  | Any one other                                                                                                                                      | 1 |
|       | 12  | Any one other                                                                                                                                      | 1 |
|       |     | Max 2 (from 3)                                                                                                                                     |   |
|       |     | herence                                                                                                                                            |   |
|       |     | Divided into clear sections                                                                                                                        |   |
|       |     | At least 4 points on transpiration stream (Points $1-9$ )                                                                                          |   |
|       |     | And at least 1 point on importance (Points $10 - 12$ )                                                                                             |   |
|       | All | three points                                                                                                                                       | 1 |
|       | Rel | evance                                                                                                                                             |   |
|       | •   | No mention of details of xerophytes or hydrophytes, mineral deficiencies                                                                           |   |
|       | •   | At least 4 points on transpiration stream (Points $1-9$ )                                                                                          |   |
|       | •   | And at least 1 point on importance (Points $10 - 12$ )                                                                                             |   |
|       | All | three points                                                                                                                                       | 1 |
|       | Tot | al                                                                                                                                                 | 1 |
|       |     |                                                                                                                                                    |   |
| Notes | 5   |                                                                                                                                                    |   |
| Point | 1   | – not along concentration gradient                                                                                                                 |   |

Point 1- not along concentration gradientPoint 5a- not capillarity/capillary actionPoint 8- not passes for evaporatesPoint 9- not through leaves for leaf surface or stomataPoint 10- not support for turgidity

Factors affecting transpiration not irrelevant

[END OF MARKING INSTRUCTIONS]