2006 Mathematics

Higher - Paper 1

Finalised Marking Instructions

© The Scottish Qualifications Authority 2006

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

1. Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than marks deducted for what is wrong.
2. Award one mark for each 'bullet' point. Each error should be underlined in RED at the point in the working where it first occurs, and not at any subsequent stage of the working.
3. The working subsequent to an error must be followed through by the marker with possible full marks for the subsequent working, provided that the difficulty involved is approximately similar. Where, subsequent to an error, the working is eased, a deduction(s) of mark(s) should be made.
This may happen where a question is divided into parts. In fact, failure to even answer an earlier section does not preclude a candidate from assuming the result of that section and obtaining full marks for a later section.
4. Correct working should be ticked $(\sqrt{ })$. This is essential for later stages of the SQA procedures. Where working subsequent to an error(s) is correct and scores marks, it should be marked with a crossed tick (\boldsymbol{X} or $\mathbf{X} \sqrt{ }$). In appropriate cases attention may be directed to work which is not quite correct (e.g. bad form) but which has not been penalised, by underlining with a dotted or wavy line.
Work which is correct but inadequate to score any marks should be corrected with a double cross tick
5. - The total mark for each section of a question should be entered in red in the outer right hand margin, opposite the end of the working concerned.

- Only the mark should be written, not a fraction of the possible marks.
- These marks should correspond to those on the question paper and these instructions.

6. It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked. Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer.
7. As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Accept answers arrived at by inspection or mentally where it is possible for the answer so to have been obtained. Situations where you may accept such working will normally be indicated in the marking instructions.
8. Do not penalise:

- working subsequent to a correct answer
- legitimate variations in numerical answers
- correct working in the "wrong" part of a question
- omission of units
- bad form

9. No piece of work should be scored through without careful checking - even where a fundamental misunderstanding is apparent early in the answer. Reference should always be made to the marking scheme - answers which are widely off-beam are unlikely to include anything of relevance but in the vast majority of cases candidates still have the opportunity of gaining the odd mark or two provided it satisfies the criteria for the mark(s).
10. If in doubt between two marks, give an intermediate mark, but without fractions. When in doubt between consecutive numbers, give the higher mark.
11. In cases of difficulty covered neither in detail nor in principle in the Instructions, attention may be directed to the assessment of particular answers by making a referal to the P.A. Please see the general instructions for P.A. referrals.
12. No marks should be deducted at this stage for careless or badly arranged work. In cases where the writing or arrangement is very bad, a note may be made on the upper left-hand corner of the front cover of the script.

13 Transcription errors: In general, as a consequence of a transcription error, candidates lose the opportunity of gaining either the first ic mark or the first pr mark.

14 Casual errors: In general, as a consequence of a casual error, candidates lose the opportunity of gaining the appropriate ic mark or pr mark.

15 Do not write any comments on the scripts. A revised summary of acceptable notation is given on page 4.

16 Working that has been crossed out by the candidate cannot receive any credit. If you feel that a candidate has been disadvantaged by this action, make a P.A. Referral.

17 Throughout this paper, unless specifically mentioned, a correct answer with no working receives no credit.

Summary

Throughout the examination procedures many scripts are remarked. It is essential that markers follow common procedures:

1 Tick correct working.
2 Put a mark in the outer right-hand margin to match the marks allocations on the question paper.
3 Do not write marks as fractions.
4 Put each mark at the end of the candidate's response to the question.
5 Follow through errors to see if candidates can score marks subsequent to the error.
6 Do not write any comments on the scripts.

Higher Mathematics : A Guide to Standard Signs and Abbreviations

Remember - No comments on the scripts. Please use the following and nothing else.

Signs

\checkmark The tick. You are not expected to tick every line but of course you must check through the whole of a response.
\times The cross and underline. Underline an error and place a cross at the end of the line.
\times The tick-cross. Use this to show correct work where you are following through subsequent to an error.

Bullets showing where marks are being allotted may be shown on scripts

Remember - No comments on the scripts. No abreviations. No new signs.
Please use the above and nothing else.

All of these are to help us be more consistent and accurate.

Note: There is no such thing as a transcription error, a trivial error, a casual error or an insignificant error. These are all mistakes and as a consequence a mark is lost.

Page 5 lists the syllabus coding for each topic. This information is given in the legend underneath the question. The calculator classification is CN(calculator neutral), CR(calculator required) and NC (non-calculator).

1	2		UNIT 1	1	2		UNIT 2	1	2		UNIT 3 Year	
		A1	determine range/domain			A15	use the general equation of a parabola			A28	use the laws of logs to simplify/find equiv. expression	
		A2	recognise general features of graphs:poly, exp,log			A16	solve a quadratic inequality			A29	sketch associated graphs	
		Аз	sketch and annotate related functions			A17	find nature of roots of a quadratic			A30	solve equs of the form $A=B e^{k t}$ for A, B, k or t	\%
		A4	obtain a formula for composite function			A18	given nature of roots, find a condition on coeffs			A31	solve equs of the form $\log _{b}(a)=c$ for a, b or c	
		A5	complete the square			A19	form an equation with given roots			A32	solve equations involving logarithms	
		A6	interpret equations and expressions			A20	apply A15-A19 to solve problems			АЗз	use relationships of the form $y=a x^{n}$ or $y=a b^{x}$	
		A7	determine function(poly, exp,log) from graph \mathcal{B} vv							A34	apply A28-A33 to problems	
		A8	sketch/annotate graph given critical features									
		A9	interpret loci such as st.lines, para,poly, circle									
		A10	use the notation u_{n} for the nth term			A21	use Rem Th. For values, factors, roots			G16	calculate the length of a vector	
		A11	evaluate successive terms of a $R R$			A22	solve cubic and quartic equations			G17	calculate the 3rd given two from A, B and vector $A B$	
		A12	decide when $R R$ has limit/interpret limit			A23	find intersection of line and polynomial			G18	use unit vectors	
		A13	evaluate limit			A24	find if line is tangent to polynomial			G19	use: if $\boldsymbol{u}, \boldsymbol{v}$ are parallel then $\boldsymbol{v}=k \boldsymbol{u}$	
		A14	apply A10-A14 to problems			A25	find intersection of two polynomials			G20	add, subtract, find scalar mult. of vectors	
						A26	confiirm and improve on approx roots			G21	simplify vector pathways	
						A27	apply A21-A26 to problems			G22	interpret 2D sketches of 3D situations	
										G23	find if 3 points in space are collinear	
										G24	find ratio which one point divides two others	
		G1	use the distance formula			G9	find C / R of a circle from its equation/other data			G25	given a ratio, find/interpret 3rd point/vector	
		G2	find gradient from 2 pts,/angle/equ. of line			G10	find the equation of a circle			G26	calculate the scalar product	
		G3	find equation of a line			G11	find equation of a tangent to a circle			G27	use: if $\boldsymbol{u}, \boldsymbol{v}$ are perpendicular then $\boldsymbol{v} \cdot \boldsymbol{u}=\mathbf{0}$	
		G4	interpret all equations of a line			G12	find intersection of line \mathcal{E}^{3} circle			G28	calculate the angle between two vectors	
		G5	use property of perpendicular lines			G13	find if/when line is tangent to circle			G29	use the distributive law	
		G6	calculate mid-point			G14	find if two circles touch			G30	apply G16-G29 to problems eg geometry probs.	
		G7	find equation of median, altitude,perp. bisector			G15	apply G9-G14 to problems					
		G8	apply G1-G7 to problems eg intersect., concur.,collin.									
		C1	differentiate sums, differences			C12	find integrals of $p x^{n}$ and sums/diffs			C20	differentiate psin $(a x+b), p \cos (a x+b)$	
		C2	differentiate negative \mathcal{E}° fractional powers			C13	integrate with negative \mathcal{E}^{8} fractional powers			C21	differentiate using the chain rule	
		C3	express in differentiable form and differentiate			C14	express in integrable form and integrate			C22	integrate $(a x+b)^{n}$	
		C4	find gradient at point on curve \mathcal{B} vv			C15	evaluate definite integrals			C23	integrate $p \sin (a x+b), p \cos (a x+b)$	
		C5	find equation of tangent to a polynomial/trig curve			C16	find area between curve and x-axis			C24	apply C20-C23 to problems	
		c6	find rate of change			C17	find area between two curves					
		C7	find when curve strictly increasing etc			C18	solve differential equations(variables separable)					
		C8	find stationary points/values			C19	apply C12-C18 to problems					
		C9	determinenature of stationary points									
		C10	sketch curvegiven the equation									
		C11	apply C1-C10 to problems eg optimise, greatest/least									
		T1	use gen. features of graphs of $f(x)=k \sin (a x+b)$,			T7	solve linear ${ }^{6}$ quadratic equations in radians			T12	solve sim.equs of form $k \cos (a)=p, k \sin (a)=q$	
			$f(x)=k \cos (a x+b)$; identify period/amplitude			T8	apply compound and double angle (c \& da) formulae			T13	express pcos $(x)+q \sin (x)$ in form $k \cos (x \pm a)$ etc	
		T2	use radians inc conversion from degrees $\mathcal{B} \mathrm{vv}$				in numerical $\mathcal{B}^{\text {literal cases }}$			T14	find max/min/zeros of $\operatorname{pcos}(x)+q \sin (x)$	
		T3	know and use exact values			т9	apply c \mathcal{E} da formulae in geometrical cases			T15	sketch graph of $y=p \cos (x)+q \sin (x)$	
		T4	recognise form of trig. function from graph			T10	use c \mathcal{B} da formulaewhen solving equations			T16	solve equ of the form $y=p \cos (r x)+q \sin (r x)$	
		T5	interpret trig. equations and expressions			T11	apply T\%-T10 to problems			T17	apply T12-T16 to problems	
		т6	apply T1-T5 to problems									

1 Triangle ABC has vertices $\mathrm{A}(-1,12), \mathrm{B}(-2,-5)$ and $C(7,-2)$.
(a) Find the equation of the median BD.
(b) Find the equation of the altitude AE.
(c) Find the coordinates of the point of intersection of BD and AE .

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
1	a,b,c	$3,3,3$	C	G7, G8	CN	$06 / 01$

The primary method m / s is based on the following generic m / s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME
${ }^{-1}$ ic interpret "median"
$\bullet{ }^{2}$ ss find gradient
\bullet^{3} ic state equation

- ${ }^{4}$ ss find gradient
- ${ }^{5}$ ss find perpendicular gradient
$\bullet{ }^{6}$ ic state equation
\bullet^{7} ss start to solve simultaneous equations
- 8 pr solve for one variable
$\bullet{ }^{9}$ pr process

Notes

1 For candidates who find two medians
$\cdot{ }^{1},,^{2},{ }^{3}$ and $\cdot{ }^{7},{ }^{8},{ }^{9}$ are available.
2 For candidates who find two altitudes $\cdot{ }^{4},{ }^{5},{ }^{6}$ and $\cdot{ }^{7},{ }^{8},{ }^{9}$ are available.

3 For candidates who find (a) altitude and (b) median see common error box number 3.

4 In (a) note that $(4,7)$ happens to lie on the median but does not qualify as a point to be used in \cdot^{3}.

Primary Method : Give 1 mark for each •

- ${ }^{1} \quad D=(3,5)$
- $m_{B D}=2$
-3 $y-5=2(x-3)$ or $y+5=2(x-(-2))$ etc $\quad \mathbf{3}$ marks
- $m_{B C}=\frac{1}{3}$
stated explicitly
$m_{\text {alt }}=-3$
- ${ }^{6} y-12=-3(x-(-1)) \quad 3$ marks
$\bullet^{7} \quad y-5=2(x-3)$ and $y-12=-3(x-(-1))$
or equivalent
- ${ }^{8} \quad x=2$
- ${ }^{9} \quad y=3$

3 marks

Notes cont

$5 \quad \ln (\mathrm{~b}) \cdot{ }^{6}$ is only available as a consequence of attempting to find a perpendicular gradient.
$6 \quad$ In (b) candidates who guess the coordinates for E and use these to find the equation $A E$, can earn no marks in this part.
$7 \quad$ In (c) note that "equating zeros" is only a valid strategy when either the coefficients of x or the coefficients of y are equal.
$8 \quad .7$ is a strategy mark for juxtaposing the two required equations.
$9 \quad$ See general note at the foot of page 7.

Common Error 1
Finding two medians

- ${ }^{1} \quad D=(3,5)$
- $m_{B D}=2$
- ${ }^{3} \quad y-5=2(x-3)$
- ${ }^{4} \quad X$
- ${ }^{5} \quad X$
${ }^{6} \quad X$
- $7 \quad y=2 x-1 \& 31 x+7 y=53$
- $\quad x=\frac{4}{3}$
- $9 \quad y=\frac{5}{3}$
maximum of 6 marks

Common Error 2 Finding two altitudes

$$
\bullet^{1} \quad X
$$

${ }^{2} \quad X$

- ${ }^{3} \quad X$
- $m_{B C}=\frac{1}{3}$
- ${ }^{5} \quad m_{\text {alt }}=-3$
- $\quad y-12=-3(x-(-1))$
- $7 \quad 4 x-7 y=27 \& y=-3 x+9$
- $8 \quad x=\frac{18}{5}$
- $9 \quad y=-\frac{9}{5}$
maximum of 6 marks

Common Error 3
Finding (a) altitude and (b) median

	$\bullet{ }^{1}$	$m_{A C}=-\frac{7}{4}$
$X \sqrt{ }$	$\bullet \bullet^{2}$	$m_{B D}=\frac{4}{7}$
	$\bullet \bullet^{3}$	$y--5=\frac{4}{7}(x--2)$
$X \sqrt{ }$	$\bullet \bullet^{4}$	midpt of $B C=\left(\frac{5}{2},-\frac{7}{2}\right)$
	$\bullet{ }^{5}$	$m_{A C}=-\frac{31}{7}$
	$\bullet \bullet^{6}$	$y-12=-\frac{31}{7}(x-(-1))$
$X \sqrt{ }$	\bullet^{7}	$4 x-7 y=27 \& 31 x+7 y=53$
$X \sqrt{ }$	\bullet^{8}	$x=\frac{16}{7}$
$X \sqrt{ }$	\bullet	$y=-\frac{125}{49}$
maximum of 5 marks		

maximum of 5 marks

2 A circle has centre $\mathrm{C}(-2,3)$ and passes through $\mathrm{P}(1,6)$.
(a) Find the equation of the circle.
(b) PQ is a diameter of the circle. Find the equation of the tangent to this circle at Q .

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
2	a	2	C	G10	CN	$06 / 54$
	b	4	C	G11	CN	

The primary method m / s is based on the following generic m / s.
THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE
GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME

- ${ }^{1}$ ic enter coord. of centre in general equation
\bullet^{2} ss find (radius) ${ }^{2}$
\bullet^{3} ss e.g. use $\overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{CQ}}$ to find Q
${ }^{4}$ pr find gradient of diameter
${ }^{5}$ ss know and use tangent perp. to diameter
- ${ }^{6}$ ic state equation

Primary Method : Give 1 mark for each -

$$
\begin{aligned}
& (x-a)^{2}+(y-b)^{2}=r^{2} \\
& (x-(-2))^{2}+(y-3)^{2} \\
& r^{2}=18
\end{aligned}
$$

$\mathrm{Q}=(-5,0)$

- $m_{\text {diameter }}=1 \quad$ stated or implied by $\cdot 5$
- $\quad m_{\text {tangent }}=-1$
- ${ }^{6} y-0=-(x-(-5))$

Alternative Method for (a)

For answers of the form $x^{2}+y^{2}+2 g x+2 f y+c=0$

- $x^{2}+y^{2}+4 x-6 y+c=0$
$\bullet^{2} \quad c=-5$

General Notes applicable throughout the marking scheme

There are many instances when follow throughs come into play and these will not always be highlighted for you. The following example is a reminder of what you have to look out for when you are marking.

example

At the $\cdot{ }^{3}$ stage a candidate start with the wrong coordinates for Q . Then

$$
\begin{array}{lll}
X & \bullet{ }^{3} & \mathrm{Q}=(-4,0) \\
X \sqrt{ } & \bullet{ }^{4} & m_{\text {diameter }}=\frac{6}{5} \\
X \sqrt{ } \bullet \bullet^{5} & m_{\text {tangent }}=-\frac{5}{6} \\
X \sqrt{ } & \bullet & y-0=-\frac{5}{6}(x-(-4))
\end{array}
$$

so the candidate loses \cdot^{3} but gains $\cdot^{4},{ }^{5}$ and $\cdot{ }^{6}$ as a consequence of following through.
Any error can be followed through and the subsequent marks
awarded provided the working has not been eased.
Any deviation from this will be noted in the marking scheme.

3 Two functions f and g are defined on the set of real numbers by $f(x)=2 x+3$ and $g(x)=2 x-3$.
(a) Find an expressions for
(i) $\quad f(g(x))$
(ii) $g(f(x))$.
(b) Determine the least possible value of $f(g(x)) \times g(f(x))$.

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
3	a	3	C	A4	CN	$06 / 07$
	b	2	C	A6	CN	

The primary method m / s is based on the following generic m / s.
THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE
GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME

- ${ }^{1}$ ic int. composition
\bullet - ic int. composition
$\bullet{ }^{3}$ ic int. composition
- 4 pr simplify all functions
${ }^{5}$ ic int. result

Primary Method : Give 1 mark for each •

- ${ }^{1} \quad f(g(x))=f(2 x-3) \quad$ stated or implied by $\cdot \mathbf{2}$
- ${ }^{2} \quad 2(2 x-3)+3$
- $\quad g(f(x))=2(2 x+3)-3 \quad 3$ marks
- $16 x^{2}-9 \quad$ stated explicitly
- ${ }^{5}$ min.value $=-9 \quad 2$ marks

Notes

1 In (a) 2 marks are available for finding one of $f(g(x))$ or $g(f(x))$ and the third mark is for the other one.

2 In (a) the finding of $f(f(x))$ and $g(g(x))$ earns no marks.
$3 .{ }^{5}$ is only available if $\cdot{ }^{4}$ has been awarded.
4 In (b) for ${ }^{5}$, no justification is necessary. Ignore any comments, rational or irrational.

Alternative Marking 1 [Marks 1-3]

- $\quad g(f(x))=g(2 x+3)$
- $22(2 x+3)-3$
- ${ }^{3} \quad f(g(x))=2(2 x-3)+3$

Common Error No. 1 for (a) " g and f" transposed.

X	$\bullet \bullet^{1}$	$f(g(x))=f(2 x+3)$
$\sqrt{ } X$	\bullet^{2}	$2(2 x+3)-3$
$\sqrt{ } X$	\bullet	$g(f(x))=2(2 x-3)+3$

Award 2 out of 3

Common Error No. 2 for (a)

X	$\bullet{ }^{1}$	$f(g(x))=f(2 x+3)$
$\sqrt{ } X$	\bullet^{2}	$2(2 x+3)-3$
$\sqrt{ }$	\bullet^{3}	$g(f(x))=2(2 x+3)-3$

Award 2 out of 3

Common Error No. 3 for (a) Repeated error

$\sqrt{ }$	$\bullet \bullet^{1}$	$f(g(x))=f(2 x-3)$
X	\bullet^{2}	$2(2 x+3)-3$
$\sqrt{ } X$	\bullet^{3}	$g(f(x))=2(2 x-3)+3$

Award 2 out of 3

4 A sequence is defined by the recurrence relation $u_{n+1}=0.8 u_{n}+12, u_{0}=4$.
(a) State why the recurrence relation has a limit.
(b) Find this limit.

Notes

For (a)
1 Accept
$|0.8|<1$
$0<0.8<1$
0.8 lies between -1 and 1
0.8 is a proper fraction

Alternative Method for (b)

- $\quad L=\frac{12}{1-0.8}$
- ${ }^{3} \quad$ limit $=60$

Bad Form

- ${ }^{2} \quad L=\frac{12}{0.2}$
- \quad limit $=60$
award 2 marks

2 Do NOT accept

$-1 \leq 0.8 \leq 1$
$-1<a<1 \quad$ unless a is clearly identifed/replaced by 0.8 anywhere in the answer.
$0.8<1$
$\ln (b)$
$3 \quad L=\frac{b}{1-a}$ and nothing else gains no marks.
$4 \quad L=\frac{12}{0.2}$ or $\frac{120}{2}$ or $\frac{60}{1}$ etc does NOT gain ${ }^{3}$.
5 An answer of 60 without any working gains NO marks.
6 Any calculations based on "wrong" formulae gain NO marks.
$5 \quad$ A function f is defined by $f(x)=(2 x-1)^{5}$. Find the coordinates of the stationary point on the graph with equation $y=f(x)$ and determine its nature.

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
5		6	C	C8, C9	NC	$06 / 76$
	1	B				

The primary method m / s is based on the following generic m / s.
THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE
GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME

- ${ }^{1}$ ss know to start to differentiate
${ }^{2}{ }^{2}$ pr differentiate
\bullet^{3} ss set derivative $=0$
- ${ }^{4}$ pr solve
\bullet - pr evaluate
${ }^{6}$ ic justification
${ }^{-7}$ ic state conclusion

Primary Method : Give 1 mark for each -

- $f^{\prime} \quad f^{\prime}(x)=\ldots \ldots$
- ${ }^{2} \quad 5(2 x-1)^{4} \times 2$
- $\quad f^{\prime}(x)=0$
- $\quad x=\frac{1}{2}$
- $5 \quad f\left(\frac{1}{2}\right)=0$
- ${ }^{6}$ nature table
- 7 pt of inflexion at $\left(\frac{1}{2}, 0\right)$

7 marks

Notes

1 The " $=0$ " shown at ${ }^{3}$ must appear at least once somewhere in the working between \cdot^{1} and $\cdot{ }^{4}$ (but not necessarily at ${ }^{3}$).
$2 .{ }^{4}$ is only available as a consequence of solving $f^{\prime}(x)=0$.

3 A wrong derivative which eases the working will preclude at least ${ }^{4}$ from being awarded.

4 For marks ${ }^{6}$ and \cdot^{7}, a nature table is mandatory. The minimum amount of detail that is required is shown here:

$$
\begin{array}{c|ccc}
& <\frac{1}{2} & \frac{1}{2} & >\frac{1}{2} \\
\hline f^{\prime}(x) & + & 0 & + \\
& . & \cdots & .
\end{array}
$$

Candidates who use only $f^{\prime \prime}(x)=0$ and try to draw conclusions from this cannot gain ${ }^{6}$ or \cdot^{7}.
[$f^{\prime \prime}(x)=0$ is a necessary but not sufficient condition for identifying points of inflexion].
$5 \quad .7$ is ONLY available subsequent to a correct nature table for the candidate's own derivative.
$6 \quad .{ }^{4}$ is lost in each of the following cases for the candidate's solution to the equation at ${ }^{3}$.
(i) $\quad x=\frac{1}{2}$ and $x=$ something else
(ii) two wrong values for x
(iii) guess a value for x

Only one value for x needs to be followed through for $\cdot{ }^{5},{ }^{6}$ and $\cdot{ }^{7}$.

The primary method m / s is based on the following generic m / s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME

- ${ }^{1}$ sS know to integrate
- ${ }^{2}$ pr integrate
-3 ic substitute limits
- ${ }^{4}$ pr evaluate
${ }^{5}$ ic use result from \bullet^{2} with new limits
- ${ }^{6}$ pr evaluate
- ${ }^{7}$ ss deal with the "-ve" sign and
evaluate total area

Notes

for (a)
1 Only a limited number of marks are available to candidates who differentiate -see Common Error No.1.
$2 \quad \ln (\mathrm{a})$
candidates who transpose the limits can still earn ${ }^{4}$ if the deal with the "-ve" sign appropriately.
$3 \quad \ln (b)$
. 7 is lost for such statements as $-3 \frac{1}{4}=3 \frac{1}{4}$.
$4 \quad \ln (\mathrm{~b})$ using $\int_{0}^{2} \ldots d x$ earns no marks.

Common Error No. 1

$$
\begin{array}{lll}
\sqrt{ } & \bullet & \int_{0}^{1}\left(x^{3}-6 x^{2}+4 x+1\right) d x \\
X & \bullet & 3 x^{2}-12 x+4 \\
X & \bullet{ }^{3} & \left(3.1^{2}-12.1+4\right)-4 \\
X & \bullet \bullet^{4} & -9 \\
& \\
\sqrt{ } & \bullet^{5} & \int_{1}^{2} \ldots d x \text { or equivalent } \\
X \sqrt{ } & \bullet^{6} & \left(3.2^{2}-12.2+4\right)-\left(3.1^{2}-12.1+4\right)=-3 \\
X \sqrt{ } & \bullet^{7} & 12
\end{array}
$$

Primary Method : Give 1 mark for each •

$\bullet^{1} \int_{0}^{1}\left(x^{3}-6 x^{2}+4 x+1\right) d x \quad$ stated or implied by ${ }^{2}$
$\bullet^{2} \quad \frac{1}{4} x^{4}-\frac{6}{3} x^{3}+\frac{4}{2} x^{2}+x$
$\bullet^{3} \quad\left(\frac{1}{4} \cdot 1^{4}-2.1^{3}+2.1^{2}+1\right)-0$

- $\frac{5}{4} \quad$ or equivalent
$\int_{1}^{5} \ldots d x$
$\bullet\left(\frac{1}{4} \cdot 2^{4}-2.2^{3}+2.2^{2}+2\right)-\left(\frac{1}{4} \cdot 1^{4}-2.1^{3}+2.1^{2}+1\right)=-\frac{13}{4}$
$\bullet \frac{9}{2} \quad$ or equivalent

Alternative Method 1 for (b)

- $\int_{2}^{1} \ldots d x$
$\bullet^{6} \quad\left(\frac{1}{4} \cdot 1^{4}-2.1^{3}+2.1^{2}+1\right)-\left(\frac{1}{4} \cdot 2^{4}-2.2^{3}+2.2^{2}+2\right)$
- ${ }^{7} \quad \frac{9}{2}$

Alternative Method 2 for (b)

- ${ }^{5}-\int_{1}^{2} \ldots d x$
$\bullet^{6} \quad-\left(\frac{1}{4} \cdot 2^{4}-2.2^{3}+2.2^{2}+2\right)+\left(\frac{1}{4} \cdot 1^{4}-2.1^{3}+2.1^{2}+1\right)$
- ${ }^{7} \quad \frac{9}{2}$

Alternative Method 3 for (b)

- $5\left|\int_{1}^{2} \ldots d x\right|$
${ }^{6} \quad\left|\left(\frac{1}{4} \cdot 2^{4}-2.2^{3}+2.2^{2}+2\right)-\left(\frac{1}{4} \cdot 1^{4}-2.1^{3}+2.1^{2}+1\right)\right|$
- ${ }^{7} \quad \frac{9}{2}$

7 Solve the equation $\sin x^{\circ}-\sin 2 x^{\circ}=0$ in the interval $0 \leq x \leq 360$.

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
7		4	C	T10	NC	$06 / 46$

The primary method m / s is based on the following generic m / s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME

- ${ }^{1}$ ss know to use double angle formula
- ${ }^{2}$ pr factorise
${ }^{\bullet 3}$ pr solve
- ${ }^{4}$ ic know exact values

Notes

1 An " $=0$ " must appear somewhere between the start and $\cdot{ }^{2}$ evidence.

2 The inclusion of extra answers which would have been correct with a larger interval should be treated as bad form and NOT penalised.

3 The omission of a correct answer (e.g. 0) means the candidates loses a mark (${ }^{4}$ in the Primary Method).

4 Candidates may embark on a journey with the wrong formula for $\sin \left(2 x^{\circ}\right)$. With an equivalent level of difficulty it may still be worth a maximum of 3 marks. See Common Error No. 1.

5 Candidates who draw a sketch of $y=\sin \left(x^{\circ}\right)$ and $y=\sin \left(2 x^{\circ}\right)$ giving 0,180,360 may be awarded \bullet^{1} and ${ }^{3}$.

Primary Method : Give 1 mark for each •

- $\quad \sin \left(x^{\circ}\right)-2 \sin \left(x^{\circ}\right) \cos \left(x^{\circ}\right)=0$
$\bullet^{2} \quad \sin \left(x^{\circ}\right)\left(1-2 \cos \left(x^{\circ}\right)\right)=0$
$\bullet^{3} \quad \sin \left(x^{\circ}\right)=0$ or $\cos \left(x^{\circ}\right)=0.5$
- ${ }^{4} \quad x=0,180,360, \quad 60,300$

Alternative Marking Method (Cross marking for $\cdot 3$ and $\cdot 4$)

- $\quad \sin \left(x^{\circ}\right)-2 \sin \left(x^{\circ}\right) \cos \left(x^{\circ}\right)=0$
$\bullet^{2} \quad \sin \left(x^{\circ}\right)\left(1-2 \cos \left(x^{\circ}\right)\right)=0$
$\bullet^{3} \quad \sin \left(x^{\circ}\right)=0$ and $x=0,180,360$
$\bullet^{4} \quad \cos \left(x^{\circ}\right)=0.5$ and $x=60,300$

Alternative Method Division by $\sin (x)$

- ${ }^{1} \quad \sin \left(x^{\circ}\right)-2 \sin \left(x^{\circ}\right) \cos \left(x^{\circ}\right)=0$
\bullet^{2} either $\sin \left(x^{\circ}\right)=0$ or $\sin \left(x^{\circ}\right) \neq 0$
- $\quad \sin \left(x^{\circ}\right)=0 \Rightarrow x=0,180,360$
$\bullet^{4} \cos \left(x^{\circ}\right)=0.5 \Rightarrow x=60,300$

Common Error No. 1

$X \quad \bullet^{1} \sin \left(x^{\circ}\right)-\left(1-2 \sin ^{2}\left(x^{\circ}\right)\right)=0$ $2 \sin ^{2}\left(x^{\circ}\right)+\sin \left(x^{\circ}\right)-1=0$
$X \sqrt{ } \bullet^{2}\left(2 \sin \left(x^{\circ}\right)-1\right)\left(\sin \left(x^{\circ}\right)+1\right)=0$
$X \sqrt{ } \bullet^{3} \sin \left(x^{\circ}\right)=\frac{1}{2}$ or $\sin \left(x^{\circ}\right)=-1$
$X \sqrt{ } \quad \bullet^{4} x=30,150, \quad x=270$
award 3 marks

Common Error No. 2

$$
\begin{array}{ll}
& \sin \left(x^{\circ}\right)-\sin ^{2}\left(x^{\circ}\right)=0 \\
X & \bullet{ }^{1} \\
X \sqrt{ } & \bullet{ }^{2} \sin \left(x^{\circ}\right)\left(1-\sin \left(x^{\circ}\right)\right)=0 \\
X & \bullet^{3} \sin \left(x^{\circ}\right)=0 \text { or } \sin \left(x^{\circ}\right)=1 \\
X \sqrt{ } & \bullet^{4}
\end{array}
$$

award 2 marks

Common Error No. 3

$\sin (x)-\sin (2 x)=0$
$\sin (x)=0, \sin (2 x)=0$
etc
gains NO marks

8 (a) Express $2 x^{2}+4 x-3$ in the form $a(x+b)^{2}+c$.
(b) Write down the coordinates of the turning point on the parabola with equation $y=2 x^{2}+4 x-3$.

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
8	a	3	B	A5	NC	$06 / 32$
	b	1	C	A6	NC	

The primary method m / s is based on the following generic m / s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME

- ${ }^{1}$ ss know how to complete (deal with the " a ")
\bullet^{2} pr process the value of " b "
\bullet^{3} pr process the value of " c "
- ${ }^{4}$ ic interpret equation of parabola

Note

1 Alternative Method 1 should be used for assessing part marks/follow throughs.

2 For \bullet^{4}, no justification is required.
Candidates may choose to differentiate etc. but may still earn only one mark for the correct answer.

3 For ${ }^{4}$, accept (-b, c).

Primary Method : Give 1 mark for each •

- ${ }^{1} \quad a=2$
- ${ }^{2} \quad b=1$
${ }^{3} \quad c=-5$
- ${ }^{4} \quad(-1,-5)$

Alternative Method 1 for (a)

- ${ }^{1} \quad 2\left(x^{2}+2 x\right)$
- $2 \quad 2(x+1)^{2}$
- ${ }^{3} \quad 2(x+1)^{2}-5$
- ${ }^{4}(-1,-5)$

Alternative Method 2 for (a) : Comparing coefficients

- $2 x^{2}+4 x-3=a x^{2}+2 a b x+a b^{2}+c \quad \Rightarrow a=2$
- $2 a b=4 \quad \Rightarrow b=1$
$\bullet^{3} \quad a b^{2}+c=-3 \quad \Rightarrow c=-5$
- ${ }^{4}(-1,-5)$
$9 \quad \boldsymbol{u}$ and \boldsymbol{v} are vectors given by $\boldsymbol{u}=\left(\begin{array}{c}k^{3} \\ 1 \\ k+2\end{array}\right)$ and $\boldsymbol{v}=\left(\begin{array}{c}1 \\ 3 k^{2} \\ -1\end{array}\right)$, where $k>0$.
(a) If $\boldsymbol{u} \cdot \boldsymbol{v}=1$ show that $k^{3}+3 k^{2}-k-3=0$.
(b) Show that $(k+3)$ is a factor of $k^{3}+3 k^{2}-k-3$ and hence factorise $k^{3}+3 k^{2}-k-3$ fully.

2 marks

5 marks
(c) Deduce the only possible value of k.

1 mark
(d) The angle between \boldsymbol{u} and \boldsymbol{v} is θ. Find the exact value of $\cos \theta$.

3 marks

Qu.	part	marks	Grade	Syllabus Code	Calculator class	Source
8	a	2	C	G26	CN	$05 / 10$
	b	5	C	A21	NC	
	c	1	C	A6	CN	
	d	3	C	G28	NC	

The primary method m / s is based on the following generic m / s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME
${ }^{\bullet}{ }^{1}$ pr find scalar product

- ${ }^{2}$ ic complete proof
\bullet^{3} ss know to use $k=-3$
- ${ }^{4}$ pr complete evaluation and conclusion
$\bullet{ }^{5}$ ic start to find quadratic factor
${ }^{6}$ ic complete quadratic factor
- ${ }^{7}$ pr factorise completely
- ${ }^{8}$ ic interpret k
- ${ }^{9}$ ic interpret vectors
${ }^{\text {- }}{ }^{10} \mathrm{pr}$ find magnitudes
${ }^{11}$ ss use formula

Notes

1 No explanation is required for k but the chosen value must follow from the working for ${ }^{6}$ or \cdot^{7}. Do not accept $\sqrt{ } 1$.
2 In primary method $\left(\cdot^{4}\right)$ and alternative $\left(\cdot^{5}\right)$ candidates must show some acknowledgement of the resulting "zero". Although a statement w.r.t. the zero is preferable, accept something as simple as "underlining" the zero.
3 Only numerical values are acceptable for $\cdot{ }^{9},{ }^{10}$ and ${ }^{11}$; answers are acceptable in unsimplified form eg $\cos \theta=\frac{1}{\sqrt{11} \times \sqrt{11}}$

Alternative method 1 (marks 3-7) Long Division

- ${ }^{3} \quad k+3$	k^{2}		-1	
	k^{3}	$+3 k^{2}$	-k	-3
	k^{3}	$+3 k^{2}$		
		\ldots	-k	
- ${ }^{4}$				

- ${ }^{5}$ remainder is zero so $(k+3)$ is a factor
- ${ }^{6} k^{2}-1$
${ }^{\boldsymbol{7}} \quad(k+3)(k+1)(k-1)$
stated explicitly

Primary Method : Give 1 mark for each -

$$
\bullet^{1} \quad \boldsymbol{u} \cdot \boldsymbol{v}=k^{3} \cdot 1+1 \cdot\left(3 k^{2}\right)+(k+2) \cdot(-1)_{\cdot 2 \text { before completion }}^{\text {stated or implied by }}
$$

$\bullet^{2} k^{3}+3 k^{2}-k-2=1$ and complete
2 marks

- ${ }^{3}$ know to use $k=-3$
- ${ }^{4}-27+27-(-3)-3=0 \Rightarrow x+3$ is a factor
${ }^{-}{ }^{5} \quad(k+3)\left(k^{2} \ldots\right)$
${ }^{6} \quad(k+3)\left(k^{2}-1\right)$
- ${ }^{7} \quad(k+3)(k+1)(k-1) \quad$ stated explicitly $\quad \mathbf{5}$ marks
$\bullet^{8} \quad k=1$
1 mark
$\bullet^{9} \boldsymbol{u}=\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right), \boldsymbol{v}=\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right) \quad$ stated or implied by $\cdot \mathbf{1 0}$
$\bullet^{10}|\boldsymbol{u}|=\sqrt{11} \quad$ and $|\boldsymbol{v}|=\sqrt{11}$
$\bullet^{11} \cos \theta=\frac{1}{11}$

N.B.

.${ }^{9}$ and $\cdot{ }^{10}$ may be cross-marked.

Alternative method 2 (marks 3-7) Synthetic Division

- ${ }^{3}$

- ${ }^{5} \quad " f(-3) "=0$ so $(k+3)$ is a factor
- ${ }^{6}\left(k^{2}-1\right)$
$\bullet^{7} \quad(k+3)(k+1)(k-1)$
stated explicitly

10 Two variables, x and y, are connected by the law $y=a^{x}$. A graph of $\log _{4}(y)$ against x is a straight line passing through the origin and the point $\mathrm{A}(6,3)$. Find the value of a.

Qu. part	marks	Grade	Syllabus Code	Calc
10				

Note

$1 \quad m=\frac{1}{2}$ and nothing else gains no marks.
2 For \bullet^{4}, a correct answer without any legitimate evidence gains NO marks.

3 For \bullet^{4}, ignore the inclusion of a negative answer.

Primary Method : Give 1 mark for each •

$$
\begin{array}{ll}
\bullet & \log _{4}(y)=\log _{4}\left(a^{x}\right) \\
\bullet & 3=\log _{4}\left(a^{6}\right) \\
\bullet & a^{6}=4^{3} \\
\bullet & a=2
\end{array}
$$

Alternative Method 1

- $\log _{4}(y)=\log _{4}\left(a^{x}\right)$
- ${ }^{2} \quad 3=6 \log _{4}(a)$
- ${ }^{3} \quad \log _{4}(a)=\frac{1}{2}$
- ${ }^{4} \quad a=2$

Alternative Method 2

- $\log _{4}(y)=m x+c$
- $\quad m=\frac{1}{2}, c=0$
-3 $y=4^{\frac{1}{2} x}$
- ${ }^{4} y=\left(4^{\frac{1}{2}}\right)^{x}=2^{x} \Rightarrow a=2$

Alternative Method 3

- $1 \quad \operatorname{At~A~} \log _{4}(y)=3$
- $\quad y=4^{3}$
- $a^{6}=4^{3}$
- $\quad a=2$

Alternative Method 4

- $\log _{4}(y)=\log _{4}\left(a^{x}\right)$
- ${ }^{2} \log _{4}(y)=x \log _{4}(a)$
- $\quad \log _{4}(a)=\frac{1}{2}$
- ${ }^{4} \quad a=4^{\frac{1}{2}}=2$

