X100/303

NATIONAL
QUALIFICATIONS 2006

FRIDAY, 19 MAY
10.30 AM - 12.00 NOON

MATHEMATICS HIGHER
 Units 1, 2 and 3
 Paper 2

Read Carefully

1 Calculators may be used in this paper.
2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

1. PQRS is a parallelogram. P is the point $(2,0), S$ is $(4,6)$ and Q lies on the x-axis, as shown.

The diagonal QS is perpendicular to the side PS.

(a) Show that the equation of QS is $x+3 y=22$.
(b) Hence find the coordinates of Q and R .
2. Find the value of k such that the equation $k x^{2}+k x+6=0, k \neq 0$, has equal roots.
3. The parabola with equation $y=x^{2}-14 x+53$ has a tangent at the point $\mathrm{P}(8,5)$.
(a) Find the equation of this tangent.

(b) Show that the tangent found in (a) is also a tangent to the parabola with equation $y=-x^{2}+10 x-27$ and find the coordinates of the point of contact Q.

4. The circles with equations $(x-3)^{2}+(y-4)^{2}=25$ and $x^{2}+y^{2}-k x-8 y-2 k=0$ have the same centre.
Determine the radius of the larger circle.
5. The curve $y=f(x)$ is such that $\frac{d y}{d x}=4 x-6 x^{2}$. The curve passes through the point $(-1,9)$. Express y in terms of x.
6. P is the point $(-1,2,-1)$ and Q is $(3,2,-4)$.
(a) Write down $\overrightarrow{\mathrm{PQ}}$ in component form.
(b) Calculate the length of $\overrightarrow{\mathrm{PQ}}$.
(c) Find the components of a unit vector which is parallel to $\overrightarrow{\mathrm{PQ}}$.
7. The diagram shows the graph of a function $y=f(x)$.

Copy the diagram and on it sketch the graphs of:
(a) $y=f(x-4)$;
(b) $y=2+f(x-4)$.

8. The diagram shows a right-angled triangle with height 1 unit, base 2 units and an angle of a° at A.
(a) Find the exact values of:
(i) $\sin a^{\circ}$;
(ii) $\sin 2 a^{\circ}$.

(b) By expressing $\sin 3 a^{\circ}$ as $\sin (2 a+a)^{\circ}$, find the exact value of $\sin 3 a^{\circ}$.
9. If $y=\frac{1}{x^{3}}-\cos 2 x, x \neq 0$, find $\frac{d y}{d x}$.
10. A curve has equation $y=7 \sin x-24 \cos x$.
(a) Express $7 \sin x-24 \cos x$ in the form $k \sin (x-a)$ where $k>0$ and $0 \leq a \leq \frac{\pi}{2}$.
(b) Hence find, in the interval $0 \leq x \leq \pi$, the x-coordinate of the point on the curve where the gradient is 1 .
11. It is claimed that a wheel is made from wood which is over 1000 years old.

To test this claim, carbon dating is used.
The formula $A(t)=A_{0} e^{-0.000124 t}$ is used to determine the age of the wood, where A_{0} is the amount of carbon in any living tree, $A(t)$ is the amount of carbon in the wood being dated and t is the age of the wood in years.
For the wheel it was found that $A(t)$ was 88% of the amount of carbon in a living tree.
Is the claim true?
12. PQRS is a rectangle formed according to the following conditions:

- it is bounded by the lines $x=6$ and $y=12$
-P lies on the curve with equation $y=\frac{8}{x}$ between $(1,8)$ and $(4,2)$
- R is the point $(6,12)$.

(a) (i) Express the lengths of PS and RS in terms of x, the x-coordinate of P .
(ii) Hence show that the area, A square units, of PQRS is given by

$$
A=80-12 x-\frac{48}{x}
$$

(b) Find the greatest and least possible values of A and the corresponding values of x for which they occur.

