X100/301

NATIONAL
QUALIFICATIONS 2006

FRIDAY, 19 MAY
9.00 AM - 10.10 AM

MATHEMATICS HIGHER
Units 1, 2 and 3
Paper 1
(Non-calculator)

Read Carefully

1 Calculators may NOT be used in this paper.
2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product: $\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta$, where θ is the angle between \boldsymbol{a} and \boldsymbol{b}

$$
\text { or } \boldsymbol{a} . \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \boldsymbol{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \text {. }
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

1. Triangle ABC has vertices $\mathrm{A}(-1,12)$, $\mathrm{B}(-2,-5)$ and $\mathrm{C}(7,-2)$.
(a) Find the equation of the median BD.
(b) Find the equation of the altitude AE.
(c)) Find the coordinates of the point of intersection of BD and AE.

2. A circle has centre $C(-2,3)$ and passes through $\mathrm{P}(1,6)$.
(a) Find the equation of the circle.
(b) PQ is a diameter of the circle. Find the equation of the tangent to this circle at Q .

3. Two functions f and g are defined by $f(x)=2 x+3$ and $g(x)=2 x-3$, where x is a real number.
(a) Find expressions for:
(i) $f(g(x))$;
(ii) $g(f(x))$.
(b) Determine the least possible value of the product $f(g(x)) \times g(f(x))$.
4. A sequence is defined by the recurrence relation $u_{n+1}=0 \cdot 8 u_{n}+12, u_{0}=4$.
(a) State why this sequence has a limit.
(b)) Find this limit.
5. A function f is defined by $f(x)=(2 x-1)^{5}$.

Find the coordinates of the stationary point on the graph with equation $y=f(x)$ and determine its nature.
6. The graph shown has equation $y=x^{3}-6 x^{2}+4 x+1$.

The total shaded area is bounded by the curve, the x-axis, the y-axis and the line $x=2$.
(a) Calculate the shaded area labelled S.
(b) Hence find the total shaded area.

7. Solve the equation $\sin x^{\circ}-\sin 2 x^{\circ}=0$ in the interval $0 \leq x \leq 360$.
8. (a) Express $2 x^{2}+4 x-3$ in the form $a(x+b)^{2}+c$.
(b) Write down the coordinates of the turning point on the parabola with equation $y=2 x^{2}+4 x-3$.
9. \boldsymbol{u} and \boldsymbol{v} are vectors given by $\boldsymbol{u}=\left(\begin{array}{c}k^{3} \\ 1 \\ k+2\end{array}\right)$ and $\boldsymbol{v}=\left(\begin{array}{c}1 \\ 3 k^{2} \\ -1\end{array}\right)$, where $k>0$.

(a) If $\boldsymbol{u} \cdot \boldsymbol{v}=1$, show that $k^{3}+3 k^{2}-k-3=0$.
(b) Show that $(k+3)$ is a factor of $k^{3}+3 k^{2}-k-3$ and hence factorise $k^{3}+3 k^{2}-k-3$ fully.
(c) Deduce the only possible value of k.
(d) The angle between \boldsymbol{u} and \boldsymbol{v} is θ. Find the exact value of $\cos \theta$.
10. Two variables, x and y, are connected by the law $y=a^{x}$. The graph of $\log _{4} y$ against x is a straight line passing through the origin and the point $\mathrm{A}(6,3)$. Find the value of a.

