X100/301

NATIONAL 2005

FRIDAY, 20 MAY QUALIFICATIONS 9.00 AM - 10.10 AM

MATHEMATICS HIGHER

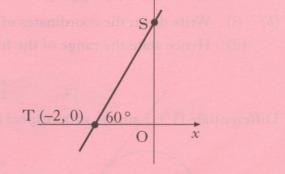
Units 1, 2 and 3 Paper 1 (Non-calculator)

Read Carefully

- Calculators may NOT be used in this paper. 1
- Full credit will be given only where the solution contains appropriate working. 2
- 3 Answers obtained by readings from scale drawings will not receive any credit.

ALL questions should be attempted.

1. Find the equation of the line ST, where T is the point (-2, 0) and angle STO is 60°.

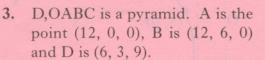


B

2. Two congruent circles, with centres A and B, touch at P. Relative to suitable axes, their equations are $x^2 + y^2 + 6x + 4y - 12 = 0$ and

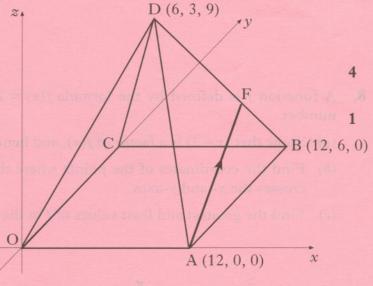
 $x^2 + y^2 - 6x - 12y + 20 = 0.$

- (a) Find the coordinates of P.
- (b) Find the length of AB.



F divides DB in the ratio 2:1.

- (*a*) Find the coordinates of the point F.
- (b) Express AF in component form.



A

[Turn over

3

32

ALL questions should be attenued

Marks

5

5

2

5

4

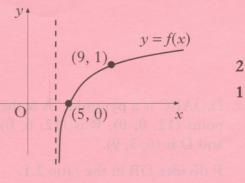
4.	Functions $f(x) = 3x - 1$ and $g(x) = x^2 + 7$ are defined on the set of real numbers.			
	(a) Find $h(x)$ where $h(x) = g(f(x))$.			2
	<i>(b)</i>	(i)	Write down the coordinates of the minimum turning point of $y = h(x)$.	
		(ii)	Hence state the range of the function <i>h</i> .	2
5.	Dif	feren	tiate $(1 + 2 \sin x)^4$ with respect to x.	2
6.	(<i>a</i>)		terms of a sequence satisfy $u_{n+1} = ku_n + 5$. Find the value of k which luces a sequence with a limit of 4.	2

(b) A sequence satisfies the recurrence relation $u_{n+1} = mu_n + 5$, $u_0 = 3$.

- (i) Express u_1 and u_2 in terms of m.
- (ii) Given that $u_2 = 7$, find the value of *m* which produces a sequence with no limit.

7. The function f is of the form $f(x) = \log_b (x - a)$. The graph of y = f(x) is shown in the diagram.

- (a) Write down the values of a and b.
- (b) State the domain of f.



8. A function f is defined by the formula $f(x) = 2x^3 - 7x^2 + 9$ where x is a real number.

- (a) Show that (x 3) is a factor of f(x), and hence factorise f(x) fully.
- (b) Find the coordinates of the points where the curve with equation y = f(x) crosses the x- and y-axes.
- (c) Find the greatest and least values of f in the interval $-2 \le x \le 2$.

9. If $\cos 2x = \frac{7}{25}$ and $0 < x < \frac{\pi}{2}$, find the exact values of $\cos x$ and $\sin x$.

[Turn over

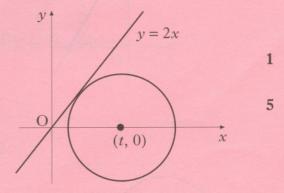
guestions should be attempted.

Marks

4

5

- 10. (a) Express $\sin x \sqrt{3} \cos x$ in the form $k \sin (x a)$ where k > 0 and $0 \le a \le 2\pi$.
 - (b) Hence, or otherwise, sketch the curve with equation $y = 3 + \sin x \sqrt{3} \cos x$ in the interval $0 \le x \le 2\pi$.
- 11. (a) A circle has centre (t, 0), t > 0, and radius 2 units.Write down the equation of the circle.
 - (b) Find the exact value of t such that the line y = 2x is a tangent to the circle.



[END OF QUESTION PAPER]

Turn över