X100/301

NATIONAL
QUALIFICATIONS 2005

FRIDAY, 20 MAY 9.00 AM - 10.10 AM

MATHEMATICS HIGHER
Units 1, 2 and 3
Paper 1
(Non-calculator)

Read Carefully

1 Calculators may NOT be used in this paper.
2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

1. Find the equation of the line ST, where T is the point $(-2,0)$ and angle STO is 60°.

2. Two congruent circles, with centres A and B, touch at P .
Relative to suitable axes, their equations are $x^{2}+y^{2}+6 x+4 y-12=0$ and $x^{2}+y^{2}-6 x-12 y+20=0$.
(a) Find the coordinates of P .
(b) Find the length of AB .

3. $\mathrm{D}, \mathrm{OABC}$ is a pyramid. A is the point $(12,0,0), \mathrm{B}$ is $(12,6,0)$ and D is $(6,3,9)$.
F divides DB in the ratio 2:1.
(a) Find the coordinates of the point F .
(b) Express $\overrightarrow{\mathrm{AF}}$ in component form.

[Turn over
4. Functions $f(x)=3 x-1$ and $g(x)=x^{2}+7$ are defined on the set of real numbers.
(a) Find $h(x)$ where $h(x)=g(f(x))$.
(b) (i) Write down the coordinates of the minimum turning point of $y=h(x)$.
(ii) Hence state the range of the function h.
5. (a) The terms of a sequence satisfy $u_{n+1}=k u_{n}+5$. Find the value of k which produces a sequence with a limit of 4 .
(b) A sequence satisfies the recurrence relation $u_{n+1}=m u_{n}+5, u_{0}=3$.
(i) Express u_{1} and u_{2} in terms of m.
(ii) Given that $u_{2}=7$, find the value of m which produces a sequence with no limit.
6. The function f is of the form $f(x)=\log _{b}(x-a)$. The graph of $y=f(x)$ is shown in the diagram.
(a) Write down the values of a and b.
(b) State the domain of f.

7. A function f is defined by the formula $f(x)=2 x^{3}-7 x^{2}+9$ where x is a real number.
(a) Show that $(x-3)$ is a factor of $f(x)$, and hence factorise $f(x)$ fully.
(b) Find the coordinates of the points where the curve with equation $y=f(x)$ crosses the x - and y-axes.
(c) Find the greatest and least values of f in the interval $-2 \leq x \leq 2$.
8. If $\cos 2 x=\frac{7}{25}$ and $0<x<\frac{\pi}{2}$, find the exact values of $\cos x$ and $\sin x$.
9. (a) Express $\sin x-\sqrt{3} \cos x$ in the form $k \sin (x-a)$ where $k>0$ and $0 \leq a \leq 2 \pi$. 4
(b) Hence, or otherwise, sketch the curve with equation $y=3+\sin x-\sqrt{3} \cos x$ in the interval $0 \leq x \leq 2 \pi$.
10. (a) A circle has centre $(t, 0), t>0$, and radius 2 units.
Write down the equation of the circle.
(b) Find the exact value of t such that the line $y=2 x$ is a tangent to the circle.

