X100/301

NATIONAL	FRIDAY, 21 MAY	MATHEMATICS
QUALIFICATIONS	$9.00 \mathrm{AM}-10.10 \mathrm{AM}$	HIGHER
2004		Units 1,2 and 3
		Paper 1
	(Non-calculator)	

Read Carefully

1 Calculators may NOT be used in this paper.
2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

1. The point A has coordinates $(7,4)$. The straight lines with equations $x+3 y+1=0$ and $2 x+5 y=0$ intersect at B.
(a) Find the gradient of AB . 3
(b) Hence show that AB is perpendicular to only one of these two lines.
2. $f(x)=x^{3}-x^{2}-5 x-3$.
(a) (i) Show that $(x+1)$ is a factor of $f(x)$.
(ii) Hence or otherwise factorise $f(x)$ fully.
(b) One of the turning points of the graph of $y=f(x)$ lies on the x-axis.

Write down the coordinates of this turning point.
3. Find all the values of x in the interval $0 \leq x \leq 2 \pi$ for which $\tan ^{2}(x)=3$.
4. The diagram shows the graph of $y=g(x)$.
(a) Sketch the graph of $y=-g(x)$.
(b) On the same diagram, sketch the graph of $y=3-g(x)$.

2
5. A, B and C have coordinates $(-3,4,7),(-1,8,3)$ and $(0,10,1)$ respectively.
(a) Show that A, B and C are collinear.
(b) Find the coordinates of D such that $\overrightarrow{A D}=4 \overrightarrow{A B}$.
6. Given that $y=3 \sin (x)+\cos (2 x)$, find $\frac{d y}{d x}$.
7. Find $\int_{0}^{2} \sqrt{4 x+1} d x$.
8. (a) Write $x^{2}-10 x+27$ in the form $(x+b)^{2}+c$.
(b) Hence show that the function $g(x)=\frac{1}{3} x^{3}-5 x^{2}+27 x-2$ is always increasing.
9. Solve the equation $\log _{2}(x+1)-2 \log _{2}(3)=3$.
10. In the diagram
angle $\mathrm{DEC}=$ angle $\mathrm{CEB}=x^{\circ}$ and angle $\mathrm{CDE}=$ angle $\mathrm{BEA}=90^{\circ}$.
$\mathrm{CD}=1$ unit; $\mathrm{DE}=3$ units.
By writing angle DEA in terms of x°, find the exact value of
 $\cos (\mathrm{DEA})$.
11. The diagram shows a parabola passing through the points $(0,0),(1,-6)$ and $(2,0)$.
(a) The equation of the parabola is of the form $y=a x(x-b)$.
Find the values of a and b.
(b) This parabola is the graph of $y=f^{\prime}(x)$.

Given that $f(1)=4$, find the formula for $f(x)$.

