X100/303

NATIONAL
QUALIFICATIONS 2003

WEDNESDAY, 21 MAY 10.30 AM - 12.00 NOON

MATHEMATICS
HIGHER
Units 1, 2 and 3
Paper 2

Read Carefully

1 Calculators may be used in this paper.
2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

ALL questions should be attempted.

1. $f(x)=6 x^{3}-5 x^{2}-17 x+6$.
(a) Show that $(x-2)$ is a factor of $f(x)$.
(b) Express $f(x)$ in its fully factorised form.
2. The diagram shows a sketch of part of the graph of a trigonometric function whose equation is of the form $y=a \sin (b x)+c$.
Determine the values of a, b and c.

3. The incomplete graphs of $f(x)=x^{2}+2 x$ and $g(x)=x^{3}-x^{2}-6 x$ are shown in the diagram. The graphs intersect at $\mathrm{A}(4,24)$ and the origin.
Find the shaded area enclosed between the curves.

4. (a) Find the equation of the tangent to the curve with equation $y=x^{3}+2 x^{2}-3 x+2$ at the point where $x=1$.
(b) Show that this line is also a tangent to the circle with equation $x^{2}+y^{2}-12 x-10 y+44=0$ and state the coordinates of the point of contact.
5. The diagram shows the graph of a function f.
f has a minimum turning point at $(0,-3)$ and a point of inflexion at $(-4,2)$.
(a) Sketch the graph of $y=f(-x)$.
(b) On the same diagram, sketch the graph of $y=2 f(-x)$.

6. If $f(x)=\cos (2 x)-3 \sin (4 x)$, find the exact value of $f^{\prime}\left(\frac{\pi}{6}\right)$.
7. Part of the graph of $y=2 \sin \left(x^{\circ}\right)+5 \cos \left(x^{\circ}\right)$ is shown in the diagram.
(a) Express $y=2 \sin \left(x^{\circ}\right)+5 \cos \left(x^{\circ}\right)$ in the form $k \sin \left(x^{\circ}+a^{\circ}\right)$ where $k>0$ and $0 \leq a<360$.
(b) Find the coordinates of the minimum turning point P .

8. An open water tank, in the shape of a triangular prism, has a capacity of 108 litres. The tank is to be lined on the inside in order to make it watertight.

The triangular cross-section of the tank is right-angled and isosceles, with equal sides of length $x \mathrm{~cm}$. The tank has a length of $l \mathrm{~cm}$.

(a) Show that the surface area to be lined, $A \mathrm{~cm}^{2}$, is given by $A(x)=x^{2}+\frac{432000}{x} \cdot 3$
(b) Find the value of x which minimises this surface area.
9. The diagram shows vectors \boldsymbol{a} and \boldsymbol{b}.

If $|\boldsymbol{a}|=5,|\boldsymbol{b}|=4$ and $\boldsymbol{a} \cdot(\boldsymbol{a}+\boldsymbol{b})=36$, find the size of the acute angle θ between \boldsymbol{a} and \boldsymbol{b}.

10. Solve the equation $3 \cos (2 x)+10 \cos (x)-1=0$ for $0 \leq x \leq \pi$, correct to 2 decimal places.
11. (a) (i) Sketch the graph of $y=a^{x}+1, a>2$.
(ii) On the same diagram, sketch the graph of $y=a^{x+1}, a>2$.
(b) Prove that the graphs intersect at a point where the x-coordinate is $\log _{a}\left(\frac{1}{a-1}\right)$.
[END OF QUESTION PAPER]

