CREDIT - 2003 Paper II

1. $5000 \times 1.006^{3}=5090.54 \ldots$
$=5090$ (3 sig figs)
2.

	x	$x-\bar{x}$	$(x-\bar{x})^{2}$
	49	3	9
	44	-2	4
	41	-5	25
	52	6	36
	47	1	1
	43	-3	9
TOTAL	276		84

a) Mean $=\frac{\sum x}{n}=\frac{276}{6}=46$
b) \quad S.D. $=\sqrt{\frac{84}{5}}=\sqrt{16.8}=4.09 \ldots .=4.1$
c) The price of the milk is more variable. The price of the sugar is more consistent.
3. Draw a diagram, and mark in given bearings
which show that $\angle \mathrm{AHB}=68^{\circ}\left(140^{\circ}-72^{\circ}\right)$

Look at diagram - SAS - Cosine Rule
$d^{2}=30^{2}+50^{2}-2 \times 30 \times 50 \times \cos 68^{\circ}$
$d^{2}=3400-1123.819 \ldots=2276.181 \ldots$
$\mathrm{d}=47.70933 \ldots$.
yachts are 47.7 km apart when they stopped.
4. a) $\mathrm{Vol}=\pi r^{2} h=\pi \times 5^{2} \times 14=1099.557 \ldots$

$$
=1100 \mathrm{~cm}^{3} \text { (3 sig figs) [note: } d=10 \text { so } r=5 \text {] }
$$

b) $600=\pi r^{2} h \quad 600=\pi 5^{2} \times h$
$h=\frac{600}{25 \pi} \quad h=7.639 \ldots$
depth of coffee $=7.6 \mathrm{~cm}$ (1d.p.)
5. Using a formula

$$
\begin{aligned}
& d=\frac{n(n-3)}{2} \rightarrow 20=\frac{n(n-3)}{2} \\
& \rightarrow 40=n(n-3) \rightarrow 40=n^{2}-3 n \\
& \rightarrow n^{2}-3 n-40=0 \rightarrow(n+5)(n-8)=0
\end{aligned}
$$

So $n=-5$, or 8
Polygon has 8 sides (-5 is not possible - discard)
6.

Use SOH-CAH-TOA (twice)

Find SV and then SW
In $\Delta \mathrm{STV} \frac{\mathrm{SV}}{13.1}=\sin 34 \rightarrow \mathrm{SV}=13.1 \sin 34$

$$
\mathrm{SV}=7.3254 \ldots . \text { centimetres }
$$

In $\Delta \mathrm{SWV} \frac{\mathrm{SW}}{\mathrm{SV}}=\cos 25 \rightarrow S W=7.33 \cos 25$

$$
\mathrm{SW}=6.643 \ldots=6.6 \text { centimetres }(1 \mathrm{~d} . \mathrm{p} .)
$$

7.

Area of triangle $==\frac{1}{2} a b \sin \mathrm{C}$
Transpose letters.
$38=1 / 2 \times 9 \times 14 \times \sin B \quad 38=63 \sin B$
Re-arrange: $\sin B=\frac{38}{63} \quad B=\sin ^{-1}(38 \div 63)$
Hence $B=37.096 \ldots . \quad B=37^{\circ}$

Credit 2003 - Paper 2 (continued)

8.

$$
y=k(x-a)(x-b)
$$

a) $\quad a$ and b are where the graph cuts the x-axis.

$$
a=-1 \text { and } b=3
$$

b) Put these values in equation

$$
y=k(x-(-1))(x-3) \quad y=k(x+1)(x-3)
$$

Now choose a point on the curve
Do NOT choose on the x-axis since $y=0$,
this will not be of much use to you.
Choose point $(0,-6)$
This point lies on the curve, so it satisfies equation of the curve.
$-6=k(0+1)(0-3) \rightarrow-6=-3 k$
So $k=2$
c) min. turning point lies on axis of symmetry mid way between roots. $\quad x=1$
when $x=1, y=2(1+1)(1-3) \quad y=-8$
co-ords of min t.p. are $(1,-8)$
9.

Linear Scale factor $=\frac{9}{6} \rightarrow \frac{3}{2}$
Scale factor for volume must be cubed.
Vol of perfume $=30 \times \frac{3}{2} \times \frac{3}{2} \times \frac{3}{2}=101.25 \mathrm{mls}$

Let OB (radius) $=r$
$\mathrm{EB}=3$ metres \quad (symmetry - half width of shelter $)$
$\mathrm{OD}=r$ metres (also the radius)
Hence, $\mathrm{OE}=r-2$ metres

By Pythagoras, $\quad r^{2}=(r-2)^{2}+3^{2}$

$$
\begin{gathered}
r^{2}=(r-2)(r-2)+9 \\
r^{2}=r^{2}-4 r+4+9 \\
4 r=13 \\
r=3.25 \text { metres }
\end{gathered}
$$

11. This question was disallowed in the examination because of the inconsistency of units - kph and miles.
However the following solution is offered, making the assumption that units are miles and mph.
a) Time $=$

$$
\text { Distance } \div \text { Speed }=\frac{x}{75}
$$

b) Average Speed $=$ Total Distance \div Total Time

$$
\begin{aligned}
\text { Average Speed }= & 2 x \div\left(\frac{x}{75}+\frac{x}{50}\right) \\
& \text { Total } \quad \text { Total } \\
& \text { Distance Time taken }
\end{aligned}
$$

$$
\text { Average Speed }=2 x \div\left(\frac{2 x}{150}+\frac{3 x}{150}\right)
$$

$$
\rightarrow 2 x \div\left(\frac{5 x}{150}\right) \rightarrow 2 \not x \times \frac{150^{30}}{\not p^{1} \not x}
$$

$$
=60 \mathrm{mph} .
$$

