CREDIT 2003 - Paper I

1. $5.04+8.4 \div 7$
$5.04+1.2$
6.24
2. $\frac{2}{7}\left(1 \frac{3}{4}+\frac{3}{8}\right) \Rightarrow \frac{2}{7}\left(\frac{7}{4}+\frac{3}{8}\right) \Rightarrow \frac{2}{7}\left(\frac{14}{8}+\frac{3}{8}\right)$

$$
\Rightarrow \frac{\not \mathfrak{Z}^{1}}{7} \times \frac{17}{\mathfrak{p}^{4}} \Rightarrow \frac{17}{28}
$$

3.

$$
\begin{aligned}
& 3(2 x-4)-4(3 x+1) \\
& \rightarrow \quad 6 x-12-12 x-4 \\
& \rightarrow \quad-6 x-16
\end{aligned}
$$

4. a) $f(x)=7-4 x$

$$
\begin{aligned}
& \rightarrow f(-2)=7-4(-2) \\
& \rightarrow \quad 7+8 \rightarrow \quad 15
\end{aligned}
$$

b) $f(t)=7-4 t$

Since $f(t)=9 \rightarrow 9=7-4 t$

$$
4 t=-2 \rightarrow t=-\frac{1}{2}
$$

5. $2 x^{2}-7 x-15 \rightarrow(2 x+3)(x-5)$
6. a) $m=\frac{\text { rise }}{\text { run }}=\frac{3-(-7)}{4-(-1)}=\frac{10}{5}=2$
b) $y=m x+c$, so $y=2 x-5($ since $\mathrm{c}=-5)$
c) $(3 k, k)$ must satisfy the equation

$$
k=2(3 k)-5 \quad k=6 k-5 \quad k=1
$$

7. Let cost of 1 night $=£ n$, breakfast $=£ b$
a) $3 n+2 b=145$
b) $5 n+3 b=240$
multiply (1) $x 5$ and (2) by 3
to eliminate n, leaving b
$15 n+10 b=725 \quad \ldots$ (3)
$15 n+9 b=720 \quad \ldots$ (4)
Subtract: $(3)-(4) \quad \Rightarrow \quad b=5$
Hence cost of one breakfast $=£ 5$
8. 40 balls altogether
a) $\mathrm{P}(6)=\frac{4}{40} \rightarrow \frac{1}{10}$
b) $\mathrm{P}($ yellow 6$)=\frac{1}{40}$
9. Each line in the box represents a quartile.

LQ Median UQ
Lower quartile is 25%
So 25% of matchboxes contain less than 50 matches
10. i) Parents : Teacher: Pupils
hence for 45 pupils
3 : 9 : 45
9 teachers must accompany them
ii) Each group contains $15+3+1=19$ persons
so 5 groups can go ($5 \times 19=95$)
Hence $(5 \times 15=75)$ So, 75 pupils can go.
11. i) $S_{3}=1+3+5=9$
ii) also $\mathrm{S}_{4}=16$ and $\mathrm{S}_{5}=25$

$$
\text { So, } \quad S_{n}=n^{2}
$$

iii) the $(n+1)^{\text {th }}$ term is the term that is
added onto S_{n} to get $\mathrm{S}_{\mathrm{n}+1}$
Hence this term is $S_{n+1}-S_{n}$

$$
\begin{aligned}
& =(n+1)^{2}-n^{2} \\
& =n^{2}+2 n+1-n^{2}=2 n+1
\end{aligned}
$$

12. i) $8^{\frac{2}{3}}=(\sqrt[3]{8})^{2}=2^{2}=4$
ii) $\frac{\sqrt{24}}{\sqrt{2}}=\sqrt{\frac{24}{2}}=\sqrt{12}=\sqrt{4 \times 3}=\sqrt{4} \sqrt{3}=2 \sqrt{3}$
13. Let $\mathrm{TD}=h$ Length $\mathrm{DB}=3 x-x=2 x$

Area of triangular pocket $=1 / 2$ base x height
Area triangle $=1 / 2 \times 2 x \times h \rightarrow x h$
Area of clipboard $=3 x \times 4 x=12 x^{2}$
Area triangle $=1 / 4$ area clipboard
So, $x h=3 x^{2}$ Hence: $h=3 x$

