X100/301

NATIONAL QUALIFICATIONS 2002

MONDAY, 27 MAY 9.00 AM - 10.10 AM

MATHEMATICS HIGHER

Units 1, 2 and 3
Paper 1
(Non-calculator)

Read Carefully

1 Calculators may NOT be used in this paper.
2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

ALL questions should be attempted.

1. The point $\mathrm{P}(2,3)$ lies on the circle $(x+1)^{2}+(y-1)^{2}=13$. Find the equation of the tangent at P.
2. The point Q divides the line joining $\mathrm{P}(-1,-1,0)$ to $\mathrm{R}(5,2,-3)$ in the ratio $2: 1$. Find the coordinates of Q .
3. Functions f and g are defined on suitable domains by $f(x)=\sin \left(x^{\circ}\right)$ and $g(x)=2 x$.
(a) Find expressions for:
(i) $f(g(x))$;
(ii) $g(f(x))$.
(b) Solve $2 f(g(x))=g(f(x))$ for $0 \leq x \leq 360$.
4. Find the coordinates of the point on the curve $y=2 x^{2}-7 x+10$ where the tangent to the curve makes an angle of 45° with the positive direction of the x-axis.
5. In triangle $A B C$, show that the exact value of $\sin (a+b)$ is $\frac{2}{\sqrt{5}}$.

6. The graph of a function f intersects the x-axis at $(-a, 0)$ and $(e, 0)$ as shown.
There is a point of inflexion at $(0, b)$ and a maximum turning point at (c, d).
Sketch the graph of the derived function f^{\prime}.

7. (a) Express $f(x)=x^{2}-4 x+5$ in the form $f(x)=(x-a)^{2}+b$.
(b) On the same diagram sketch:
(i) the graph of $y=f(x)$;
(ii) the graph of $y=10-f(x)$.
(c) Find the range of values of x for which $10-f(x)$ is positive.
8. The diagram shows the graph of a cosine function from 0 to π.
(a) State the equation of the graph.
(b) The line with equation $y=-\sqrt{3}$ intersects this graph at points A and B.
Find the coordinates of B.

9. (a) Write $\sin (x)-\cos (x)$ in the form $k \sin (x-a)$ stating the values of k and a where $k>0$ and $0 \leq a \leq 2 \pi$.
(b) Sketch the graph of $y=\sin (x)-\cos (x)$ for $0 \leq x \leq 2 \pi$, showing clearly the graph's maximum and minimum values and where it cuts the x-axis and the y-axis.
10. (a) Find the derivative of the function $f(x)=\left(8-x^{3}\right)^{\frac{1}{2}}, x<2$.
(b) Hence write down $\int \frac{x^{2}}{\left(8-x^{3}\right)^{\frac{1}{2}}} d x$.
11. The graph illustrates the law $y=k x^{n}$. If the straight line passes through $\mathrm{A}(0 \cdot 5,0)$ and $\mathrm{B}(0,1)$, find the values of k and n.

