CREDIT 2001 - Paper II

1. 10000×60 per hour
$10000 \times 60 \times 24$ per day
(2001 is not a leap year, so only 365 days)
$10000 \times 60 \times 24 \times 365$ per year
$=5256000000$ chocpops
Put in standard form: $=5.256 \times 10^{9}$ chocpops
2.

	x	$x-\bar{x}$	$(x-\bar{x})^{2}$
	84.2	-0.13	0.0169
	84.4	0.07	0.0049
	85.1	0.77	0.5929
	83.9	-0.43	0.1849
	81.0	-3.33	11.0889
	84.2	-0.13	0.0169
	85.6	1.27	1.6129
	85.2	0.87	0.7569
	84.9	0.57	0.3249
TOTAL	84.8	0.47	0.2209
		14.821	

a) \quad Mean $=\frac{\sum x}{n}=\frac{843.3}{10}=84.33$
S.D. $=\sqrt{\frac{14.821}{9}}=\sqrt{1.6468}=1.283 \ldots . .=1.3$
b) The rural prices are more expensive $($ mean $=88.8)$ with more variation in the prices (std. $\operatorname{dev}=2.4$)

Note: this is where the alternative formula would be easier.

	x	x^{2}
	84.2	7089.64
	84.4	7123.36
	85.1	7242.01
	83.9	7039.21
	81.0	6561
	84.2	7089.64
	85.6	7327.36
	85.2	7259.04
	84.8	7208.01
TOTAL	843.3	71130.31

3. The period of time $1999-2002$ is 3 years

Value of house in 2002
$90,000 \times 1.05^{3}=£ 104,186.25$
Value of contents in 2002
$60,000 \times 0.92^{3}=£ 46,721.28$
Total value House \& Contents:
$=£ 104,186.25+£ 46,721.28$
$=\mathbf{£ 1 5 0 , 9 0 7 . 5 3}$
4. a)

gradient $=m=\frac{\text { rise }}{\text { run }}=\frac{6-2}{12-0}=\frac{4}{12}=\frac{1}{3}$
y -intercept $=c=2$
Using: $y=m x+c$
Equation is: $y=\frac{1}{3} x+2$
multiply throughout by 3
$3 y=x+6$ now rearrange to required form
$3 y-x=6$
b) To find coordinates where pipes cross. solve the equations simultaneously.
$3 y-x=6$
$4 y+5 x=46$
Multiply (1) by 5
$15 y-5 x=30$
$4 y+5 x=46$
Add equations
$19 y=76 \rightarrow y=4$
Substitute into equation (1)
$3(4)-x=6 \rightarrow 12-x=6$
Hence $x=6$
Coordinates are: $(6,4)$

Credit 2001 - Paper 2 (continued)

5. First find the volume of the can:

Volume of can (cylinder) $=\pi r^{2} h$ diameter $=6.5 \mathrm{~cm}$, so radius $=3.75 \mathrm{~cm}$

Vol $=\pi \times 3.75^{2} \times 15=662.679 \ldots \mathrm{~cm}^{3}$

New can has same volume, but with height, 12 cm .
This time we want the diameter. So let the radius be r.
$662.7=\pi \times r^{2} \times 12$
rearrange: $\quad \frac{662.7}{\pi \times 12}=r^{2}$
hence $r^{2}=\frac{662.7}{\pi \times 12}=17.578 \ldots$
So radius, $r=\sqrt{17.578 \ldots}=4.192 \ldots$.
Hence diameter $=8.385 \ldots=8.4 \mathbf{~ c m}$
6.

Possum is on bearing of 130° from Kangaroo
Hence: $\angle \mathrm{WKP}=130^{\circ}$
We want the bearing of Possum from Wallaby i.e. the angle from North $-\mathrm{W}-\mathrm{P}$

If we can find $\angle \mathrm{KWP}$, then we can take this from 180°
Using the sine rule, we can find $\angle \mathrm{KPW}$, then this will let us find $\angle \mathrm{KWP}$

Using the sine rule (with the angle form):
$\frac{\sin \mathrm{P}}{p}=\frac{\sin \mathrm{K}}{k} \rightarrow \frac{\sin \mathrm{P}}{250}=\frac{\sin 130^{\circ}}{410}$
rearrange: $\rightarrow \quad \sin \mathrm{P}=\frac{250 \times \sin 130^{\circ}}{410}$
so, $\sin \mathrm{P}=0.4671 \rightarrow \mathrm{P}=\sin ^{-1}(0.4671)$

So $\mathrm{P}=27.846 \ldots . .=28^{\circ}$
In triangle KPW, $130^{\circ}+28^{\circ}=158^{\circ}$
and so $\angle \mathrm{KWP}=180^{\circ}-158^{\circ}=22^{\circ}$
And bearing of Possum from Wallaby is:
$180^{\circ}-22^{\circ}=158^{\circ}$
Possum is on a bearing of $\mathbf{1 5 8}^{\circ}$ from Wallaby.
7. Solve $\tan 40^{\circ}=2 \sin x^{\circ}+1 \quad 0 \leq x \leq 360$ $\tan 40^{\circ}$ is just a number, so replace it.
$\tan 40^{\circ}=0.839$
Hence: $\quad 0.839=2 \sin x^{\circ}+1$
So, $\quad 0.839-1=2 \sin x^{\circ}$
i.e. $\quad 2 \sin x^{\circ}=0.839-1$ simplify and divide by 2
$\sin x^{\circ}=-0.0805$
(Ignore the - sign, deal with this using ASTC)
acute $x=\sin ^{-1}(0.0805)$
acute $x=4.617 \ldots=4.6^{\circ}$

Using ASTC. sin is negative in quadrants 3 and 4.

Hence solutions are:
$x=180+4.6=184.6^{\circ}$
$x=360-4.6=355.4^{\circ}$
$x=184.6^{\circ}$ and 355.4°
8.

Volume of prism $=$ Area of cross section \times length
Area of cross section: $=\frac{1}{2} a b \sin \mathrm{C}$
$=\frac{1}{2} \times 8 \times 14 \times \sin 100^{\circ}=55.149 \ldots=55.1 \mathrm{~cm}^{2}$
Volume of prism $=55.1 \times 5=275.5 \mathrm{~cm}^{3}$

Credit 2001 - Paper 2 (continued)

9. Set up a proportionality
$R \propto L \quad$ and $\quad R \propto \frac{1}{d^{2}}$
Combining these into an equation with a proportionality constant k.
$R=k \frac{L}{d^{2}}$
Now use information given in question.
Wire A: $\quad R=k \frac{3}{2^{2}} \quad \rightarrow \quad R=\frac{3 k}{4}$
Wire B: $\quad R=k \frac{L}{3^{2}} \quad \rightarrow \quad R=\frac{k L}{9}$
The resistances are the same so:
$\rightarrow \frac{k L}{9}=\frac{3 k}{4}$,
cross multiply to remove fractions:
$\rightarrow \quad 4 k L=27 k$ cancel k from each side,
$\rightarrow \quad L=\frac{27}{4}=6.75$ metres
10. a)

A $\quad 14 \mathrm{~cm}$
Draw and
label a triangle

This is

SSS

Cosine Rule

Using formula on formulae sheet:
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\cos A=\frac{12^{2}+14^{2}-21^{2}}{2 \times 12 \times 14}=-0.3005 \ldots$

Remembering to use the calculator to find an acute angle, you take care of the negative sign.
acute $\mathrm{A}=\cos ^{-1}(0.3005)=72.51 \ldots$

The cosine is negative in $2^{\text {nd }}$ and $3^{\text {rd }}$ quadrants.

We want the obtuse angle.

i.e. $\left(2^{\text {nd }}\right.$ quadrant $) 180-72.5=107.5^{\circ}$

Obtuse angle table top makes with leg $=\mathbf{1 0 7 . 5}{ }^{\circ}$
b) We need another sketch.

The acute angle between leg and table top is 72.5°

This time use SOH-CAH-TOA Use sine.

$\sin 72.5=\frac{h}{70} \rightarrow h=70 \sin 72.5=66.76 \ldots$
Height of table is 66.8 cm

11 a) new length: $30+x \mathrm{~cm}$
b) new width: $20+x \mathrm{~cm}$

Hence Area $=$ length \times breadth
New Area $=(30+x)(20+x)$
Use FOIL: $A=600+30 x+20 x+x^{2}$
Tidy up: $A=x^{2}+50 x+600$
c) New area to be at least 40% more

Original area $=20 \times 30=600 \mathrm{~cm}^{2}$
New area min: $600 \times 1.4=840 \mathrm{~cm}^{2}$

Hence minimum dimensions require:
$840=x^{2}+50 x+600$
Rearrange to normal form:
i.e. $x^{2}+50 x-240=0$

Use quadratic formula
with $a=1, b=50, c=-240$
$x=\frac{-50 \pm \sqrt{(50)^{2}-4(1)(-240)}}{2(1)}$
$x=\frac{-50 \pm \sqrt{2500+960}}{2}=\frac{-50 \pm \sqrt{3460}}{2}$
Hence: $x=-54.41 \mathrm{~cm}$, or $x=4.41 \mathrm{~cm}$
Hence minimum value of x has to be $5 \mathbf{c m}$ (to nearest cm) [discard negative value]

