- 1. $3.1 + 2.6 \times 4$ 3.1 + 10.4 13.5
- 2. $3\frac{5}{8} + 4\frac{2}{3}$

Add whole number parts: $7 + \frac{5}{8} + \frac{2}{3}$ Use common denominator of 24 $7 + \frac{15}{24} + \frac{16}{24} \rightarrow 7 + \frac{31}{24} \rightarrow 7 + 1\frac{7}{24}$

- $\rightarrow 8\frac{7}{24}$
- 3. $f(m) = m^2 3m$

$$f(-5) = (-5)^2 - 3(-5)$$
$$f(-5) = 25 + 15 \qquad \Longrightarrow \qquad \qquad$$

4. $2x - \frac{(3x-1)}{4} = 4$

Multiply throughout by 4; carefully!!

40

8x - (3x - 1) = 16

Simplify 8x - 3x + 1 = 16

5x+1=16 subtract 1 from each side 5x=15 divide both sides by 3 x=3

5. This table is a five figure summary for each supplier.

+						
	Company	Minimum	Maximum	Lower Quartile	Median	Upper Quartile
	Timberplan	16	56	34	38	45
	Allwoods	18	53	22	36	49
a) Draw hay plate						

a) Draw box plots

5b). The interquartile range of Timberplan is much lower than that of Allwoods, hence they are more consistent in their deliveries.

So use Timberplan

6. A is the point (a^2, a)

T is the point (t^2, t) $a \neq t$

Gradient =
$$\frac{\text{Rise}}{\text{Run}} = \frac{\text{Change in } y}{\text{Change in } x}$$

Change in y:
$$a-t$$

Change in x: $a^2 - t^2$
Gradient = $\frac{a-t}{a^2 - t^2}$

Note that $a^2 - t^2$ is difference of 2 squares i.e. (a+t)(a-t)

So, Gradient = $\frac{a-t}{a^2-t^2} = \frac{a-t}{(a+t)(a-t)}$

cancelling gives: $\frac{a-t}{(a+t)(a-t)} \Rightarrow \frac{1}{a+t}$

7a). Total number of cars: 50 + 80 + 160 + 20 + 60 + 100 + 120 + 10= 600 cars (also given this in the question)

> Less than 3 years old is the top row: 50 + 80 + 160 + 20 = 310 cars

P(less than 3 years old) = $\frac{310}{600} = \frac{31}{60}$

7b). From sample table : greater than 2000 cc and 3 or more years old = 10 cars.

Probability of this is $\frac{10}{600} \Rightarrow \frac{1}{60}$

So out of a sample of 4200 cars

We would expect: $\frac{1}{60} \times 4200 = 70$ cars

to be $>2000\ cc$ and 3 or more years old

- 8a). Coordinates of A are (0, -3)From equation, when x = 0, y = -3
- 8b). Solve the equation $4x^2 + 4x 3 = 0$ Factorise
 - (2x-1)(2x+3) = 0
So:

$$2x-1=0 \implies 2x=1 \implies x=\frac{1}{2}$$

and

$$2x+3=0 \implies 2x=-3 \implies x=-\frac{3}{2}$$

Looking at the graph, clearly,

B is
$$\left(-\frac{3}{2}, 0\right)$$
 and C is $\left(\frac{1}{2}, 0\right)$

8c). Since a parabola is symmetrical, the minimum value is at the bottom of the curve.

This will have its *x*-coordinate half way between B and C.

x-coordinate of minimum point is $-\frac{1}{2}$

use equation to find y, i.e. the minimum value

$$y = 4\left(-\frac{1}{2}\right)^2 + 4\left(-\frac{1}{2}\right) - 3$$
$$y = 1 - 2 - 3 \implies -4$$

minimum value of : $y = 4x^2 + 4x - 3$ is -4

- 9a) Look at the pattern: $7^3 + 1 = (7+1)(7^2 - 7 + 1)$
- 9b). Again looking at the pattern $n^3 + 1 = (n+1)(n^2 - n + 1)$

9c).
$$8p^3 + 1 \implies 8p^3 + 8 - 7$$

Take out common factor of 8 in 1st 2 terms.
 $8(p^3 + 1) - 7$ and using result from (b)
 $8(p+1)(p^2 - p + 1) - 7$

10. $\frac{\sqrt{3}}{\sqrt{24}}$ use rules of surds to combine

i.e.
$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$
 So $\frac{\sqrt{3}}{\sqrt{24}} \Rightarrow \sqrt{\frac{3}{24}}$

Simplify:

$$\sqrt{\frac{3}{24}} \Rightarrow \sqrt{\frac{1}{8}}$$
 Look for largest square in 8
$$\sqrt{\frac{1}{8}} \Rightarrow \sqrt{\frac{1}{4 \times 2}}$$
 Use rules of surds again

i.e.
$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \qquad \sqrt{\frac{1}{4 \times 2}} \implies \frac{1}{\sqrt{4 \times 2}}$$

Now use rule for product of surds:

i.e.
$$\sqrt{a \times b} = \sqrt{a} \times \sqrt{b} \qquad \Rightarrow \frac{1}{2\sqrt{2}}$$

To rationalise the denominator, multiply top and bottom by $\sqrt{2}$.

$$\Rightarrow \frac{1}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{4} \text{ (since } \sqrt{a} \times \sqrt{a} = a\text{)}$$

11.a)
$$I = \frac{20}{2^c} \quad \text{put } c = 3$$
$$I = \frac{20}{2^3} \quad \Rightarrow \quad I = \frac{20}{8} \quad \Rightarrow \quad I = \frac{5}{2}$$

11b).
$$I = \frac{20}{2^c}$$
 put $I = 10$
 $10 = \frac{20}{2^c} \implies 10 \times 2^c = 20$

divide both sides by 10

 $\Rightarrow 2^c = 2$ so, c = 1

11c). Maximum possible intensity is when the denominator is as small as possible. This will be when c = 0

$$I = \frac{20}{2^0} \implies I = \frac{20}{1} \implies I = 20$$

because $2^0 = 1$

END OF QUESTION PAPER (Rev. March 2007)