X056/302

NATIONAL QUALIFICATIONS 2000

THURSDAY, 25 MAY 10.30 AM - 12.00 NOON

MATHEMATICS HIGHER

Paper 2

Read Carefully

1 Calculators may be used in this paper.
2 There are three Sections in this paper.
Section A assesses the compulsory units Mathematics 1 and 2.
Section B assesses the optional unit Mathematics 3.
Section C assesses the optional unit Statistics.
Candidates must attempt all questions in Section A (Mathematics 1 and 2) and either Section B (Mathematics 3)
or Section C (Statistics).
3 Full credit will be given only where the solution contains appropriate working.
4 Answers obtained by readings from scale drawings will not receive any credit.

ALL candidates should attempt this Section.

A1. The diagram shows a sketch of the graph of $y=x^{3}-3 x^{2}+2 x$.
(a) Find the equation of the tangent to this curve at the point where $x=1$.
(b) The tangent at the point $(2,0)$ has equation $y=2 x-4$. Find the coordinates of the point where this tangent meets the curve again.

5

5

A2. (a) Find the equation of AB , the perpendicular bisector of the line joining the points $\mathrm{P}(-3,1)$ and $\mathrm{Q}(1,9)$.
(b) C is the centre of a circle passing through P and Q . Given that QC is parallel to the y-axis, determine the equation of the circle.
(c) The tangents at P and Q intersect at T .
Write down

A3. $f(x)=3-x$ and $g(x)=\frac{3}{x}, x \neq 0$.
(a) Find $p(x)$ where $p(x)=f(g(x))$.
(b) If $q(x)=\frac{3}{3-x}, x \neq 3$, find $p(q(x))$ in its simplest form.

A4. The parabola shown crosses the x-axis at $(0,0)$ and $(4,0)$, and has a maximum at $(2,4)$.
The shaded area is bounded by the parabola, the x-axis and the lines $x=2$ and $x=k$.
(a) Find the equation of the parabola.
(b) Hence show that the shaded area, A , is given by

$$
\mathrm{A}=-\frac{1}{3} k^{3}+2 k^{2}-\frac{16}{3}
$$

2

3

A5. Solve the equation $3 \cos 2 x^{\circ}+\cos x^{\circ}=-1$ in the interval $0 \leq x \leq 360$.

A6. A goldsmith has built up a solid which consists of a triangular prism of fixed volume with a regular tetrahedron at each end.
The surface area, A, of the solid is given by

$$
A(x)=\frac{3 \sqrt{3}}{2}\left(x^{2}+\frac{16}{x}\right)
$$

where x is the length of each edge of the tetrahedron. Find the value of x which the goldsmith should use to minimise the amount of gold plating required to cover the solid.

$$
[E N D \text { OF SECTION } A]
$$

Candidates should now attempt
 EITHER Section B (Mathematics 3) on Pages five and six
 OR Section C (Statistics) on Pages seven and eight

ONLY candidates doing the course Mathematics 1, 2 and 3 should attempt this Section.

B7. For what value of t are the vectors $u=\left(\begin{array}{r}t \\ -2 \\ 3\end{array}\right)$ and $v=\left(\begin{array}{r}2 \\ 10 \\ t\end{array}\right)$ perpendicular?

B8. Given that $f(x)=(5 x-4)^{\frac{1}{2}}$, evaluate $f^{\prime}(4)$.
3

B9. A cuboid measuring 11 cm by 5 cm by 7 cm is placed centrally on top of another cuboid measuring 17 cm by 9 cm by 8 cm .
Coordinate axes are taken as shown.

(a) The point A has coordinates $(0,9,8)$ and C has coordinates $(17,0,8)$.

Write down the coordinates of B.
(b) Calculate the size of angle ABC .

B10. Find $\int \frac{1}{(7-3 x)^{2}} d x$.

B11. The results of an experiment give rise to the graph shown.
(a) Write down the equation of the line in terms of P and Q.

It is given that $P=\log _{e} p$ and $Q=\log _{e} q$.
(b) Show that p and q satisfy a relationship of the form $p=a q^{b}$, stating the values of a and b.

