X056/301

NATIONAL
QUALIFICATIONS 2000

THURSDAY, 25 MAY 9.00 AM - 10.10 AM

MATHEMATICS HIGHER

Paper 1

(Non-calculator)

Read Carefully

1 Calculators may NOT be used in this paper.
2 There are three Sections in this paper.
Section A assesses the compulsory units Mathematics 1 and 2.
Section B assesses the optional unit Mathematics 3.
Section C assesses the optional unit Statistics.
Candidates must attempt all questions in Section A (Mathematics 1 and 2) and either Section B (Mathematics 3)
or Section C (Statistics).
3 Full credit will be given only where the solution contains appropriate working.
4 Answers obtained by readings from scale drawings will not receive any credit.

ALL candidates should attempt this Section.

A1. On the coordinate diagram shown, A is the point $(6,8)$ and B is the point ($12,-5$). Angle $\mathrm{AOC}=p$ and angle $\mathrm{COB}=q$.
Find the exact value of $\sin (p+q)$.

A2. A sketch of the graph of $y=f(x)$ where $f(x)=x^{3}-6 x^{2}+9 x$ is shown below. The graph has a maximum at A and a minimum at $\mathrm{B}(3,0)$.

(a) Find the coordinates of the turning point at A.
(b) Hence sketch the graph of $y=g(x)$ where $g(x)=f(x+2)+4$.

Indicate the coordinates of the turning points. There is no need to calculate the coordinates of the points of intersection with the axes.
(c) Write down the range of values of k for which $g(x)=k$ has 3 real roots.

A3. Find the size of the angle a° that the line joining the points $\mathrm{A}(0,-1)$ and $\mathrm{B}(3 \sqrt{3}, 2)$ makes with the positive direction of the x-axis.

A4. The diagram shows a sketch of the graphs of $y=5 x^{2}-15 x-8$ and $y=x^{3}-12 x+1$.
The two curves intersect at A and touch at B , ie at B the curves have a common tangent.

(a) (i) Find the x-coordinates of the points on the curves where the gradients are equal.
(ii) By considering the corresponding y-coordinates, or otherwise, distinguish geometrically between the two cases found in part (i).
(b) The point A is $(-1,12)$ and B is $(3,-8)$.

Find the area enclosed between the two curves.

A5. Two sequences are generated by the recurrence relations $u_{n+1}=a u_{n}+10$ and $v_{n+1}=a^{2} v_{n}+16$.
The two sequences approach the same limit as $n \rightarrow \infty$.
Determine the value of a and evaluate the limit.

A6. For what range of values of k does the equation $x^{2}+y^{2}+4 k x-2 k y-k-2=0$ represent a circle?

$$
[E N D \text { OF SECTION } A]
$$

Candidates should now attempt
 EITHER Section B (Mathematics 3) on Page six
 OR Section C (Statistics) on Pages seven and eight

ONLY candidates doing the course Mathematics 1, 2 and 3 should attempt this Section.

B7. $V A B C D$ is a pyramid with a rectangular base $A B C D$.
Relative to some appropriate axes,

$$
\begin{aligned}
& \overrightarrow{\mathrm{VA}} \text { represents }-7 \boldsymbol{i}-13 \boldsymbol{j}-11 \boldsymbol{k} \\
& \overrightarrow{\mathrm{AB}} \text { represents } 6 \boldsymbol{i}+6 \boldsymbol{j}-6 \boldsymbol{k} \\
& \overrightarrow{\mathrm{AD}} \text { represents } 8 \boldsymbol{i}-4 \boldsymbol{j}+4 \boldsymbol{k}
\end{aligned}
$$

K divides BC in the ratio 1:3.
Find VK in component form.

B8. The graph of $y=f(x)$ passes through the point $\left(\frac{\pi}{9}, 1\right)$.
If $f^{\prime}(x)=\sin (3 x)$, express y in terms of x.

B9. Evaluate $\log _{5} 2+\log _{5} 50-\log _{5} 4$.

B10. Find the maximum value of $\cos x-\sin x$ and the value of x for which it occurs in the interval $0 \leq x \leq 2 \pi$.

