X056/301

NATIONAL QUALIFICATIONS 2000 THURSDAY, 25 MAY 9.00 AM – 10.10 AM MATHEMATICS HIGHER Paper 1 (Non-calculator)

Read Carefully

- 1 Calculators may NOT be used in this paper.
- 2 There are three Sections in this paper.
 - Section A assesses the compulsory units Mathematics 1 and 2. Section B assesses the optional unit Mathematics 3. Section C assesses the optional unit Statistics.

Candidates must attempt all questions in Section A (Mathematics 1 and 2) and

either Section B (Mathematics 3)

or Section C (Statistics).

3 Full credit will be given only where the solution contains appropriate working.

4 Answers obtained by readings from scale drawings will not receive any credit.

Marks

ALL candidates should attempt this Section.

A1. On the coordinate diagram shown, A is the point (6, 8) and B is the point (12, -5). Angle AOC = p and angle COB = q.

Find the exact value of sin(p + q).

A2. A sketch of the graph of y = f(x) where $f(x) = x^3 - 6x^2 + 9x$ is shown below. The graph has a maximum at A and a minimum at B(3, 0).

(<i>a</i>)	Find the coordinates of the turning point at A.	4
(<i>b</i>)	Hence sketch the graph of $y = g(x)$ where $g(x) = f(x + 2) + 4$.	
	Indicate the coordinates of the turning points. There is no need to calculate the coordinates of the points of intersection with the axes.	2
(<i>c</i>)	Write down the range of values of k for which $g(x) = k$ has 3 real roots.	1

[Turn over

A3. Find the size of the angle a° that the line joining the points A(0, -1) and B(3√3, 2) makes with the positive direction of the x-axis.

A4. The diagram shows a sketch of the graphs of $y = 5x^2 - 15x - 8$ and $y = x^3 - 12x + 1$. The two curves intersect at A and touch at B, ie at B the curves have a common tangent.

(<i>a</i>)	(i)	Find the <i>x</i> -coordinates of the points on the curves where the gradients are equal.	4
	(ii)	By considering the corresponding y-coordinates, or otherwise, distinguish geometrically between the two cases found in part (i).	1
(b)	The Find	point A is $(-1, 12)$ and B is $(3, -8)$. I the area enclosed between the two curves.	5

5

5

A5. Two sequences are generated by the recurrence relations $u_{n+1} = au_n + 10$ and $v_{n+1} = a^2v_n + 16$.

The two sequences approach the same limit as $n \rightarrow \infty$. Determine the value of *a* and evaluate the limit.

A6. For what range of values of k does the equation $x^2 + y^2 + 4kx - 2ky - k - 2 = 0$ represent a circle?

[END OF SECTION A]

Candidates should now attempt EITHER Section B (Mathematics 3) on Page six OR Section C (Statistics) on Pages seven and eight

[Turn over

3

4

3

6

ONLY candidates doing the course Mathematics 1, 2 and 3 should attempt this Section.

B7. VABCD is a pyramid with a rectangular base ABCD.

Relative to some appropriate axes,

 $\overrightarrow{VA} \text{ represents } -7i - 13j - 11k$ $\overrightarrow{AB} \text{ represents } 6i + 6j - 6k$ $\overrightarrow{AD} \text{ represents } 8i - 4j + 4k.$

K divides BC in the ratio 1:3. \rightarrow Find VK in component form.

B8. The graph of y = f(x) passes through the point $\left(\frac{\pi}{9}, 1\right)$. If $f'(x) = \sin(3x)$, express y in terms of x.

B9. Evaluate $\log_5 2 + \log_5 50 - \log_5 4$.

B10. Find the maximum value of $\cos x - \sin x$ and the value of x for which it occurs in the interval $0 \le x \le 2\pi$.

[END OF SECTION B]