## **SOLUTIONS**

1. Multiply the brackets and simplify

$$(3x-1)(x^2-2x+3)$$

3

Multiply the brackets

$$=3x^3-6x^2+9x-x^2+2x-3$$

Simplify

$$=3x^3-7x^2+11x-3$$

2. Evaluate  $17\frac{2}{3} - 8\frac{3}{5}$  Leave your answer as a mixed number. 3

Subtract the whole numbers first

$$=9\frac{2}{3}-\frac{3}{5}$$

Convert each fraction so they have the same denominator

$$=9\frac{10}{15}-\frac{9}{15}$$

Finish the subtraction

$$=9\frac{1}{15}$$

3. Decrease 840 by 13%

Find 10%, 1% then 3% of 840

$$10\% \ of \ 840 = 84$$
  
 $1\% \ of \ 840 = 8.4$   
 $3\% \ of \ 84 = 3 \times 8.4 = 25.2$ 

Add 10% and 3% to get 13%

$$13\% \ of \ 84 = 84 + 25.2 = 109.2$$

Subtract 13% of 840

$$840 - 109.2 = 730.8$$

5. (a) Factorise 12x - 18

Take out the common factor

$$=6(2x-3)$$

(b) Factorise  $x^2 - 25$ 

Difference of squares

$$=(x-5)(x+5)$$

6. Express  $x^2 - 6x + 11$  in the form  $(x - a)^2 + b$  by completing the square.

2

First make the squared bracket, so that it matches the -6x term

$$x^2 - 6x + 11$$
  
=  $(x - 3)^2 + d$ 

Now multiply out the brackets to find the value of d

$$= x^2 - 6x + 9 + d$$

So by comparing the +11 to the 9+d we get that d=2 State solution

$$=(x-3)^2+2$$

7. Change the subject of the formula to k

$$\sqrt{\frac{k+7}{9}} = y$$

3

Square both sides

$$\frac{k+7}{9} = y^2$$

Multiply both sides by 9

$$k + 7 = 9y^2$$

Subtract 7 from both sides

$$k=9y^2-7$$

8. Fish food is on special offer.

Each jar on offer contains 30% more than the standard jar.

A jar on offer contains 390 grams of fish food.

How much does the standard jar contain?

State what we currently have

$$130\% = 390$$

Divide by 13 to get 10%

$$10\% = 30$$

Multiply by 10 to get 100%

$$100\% = 300$$

9. Simplify  $(2x^5)^3$ 

2

3

Cube both parts

$$=2^3(x^5)^3$$

Evaluate

$$= 8 \checkmark x^{15}$$

- Point A(-3,7) and point B(1,-3) are joined by a straight line 11.
  - (a) Determine the gradient of this line.

Use the gradient formula

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{-3 - 7}{1 - (-3)}$$

$$m = \frac{-10}{4}$$

$$m = -\frac{5}{2}$$

2

2

(b) Determine the equation of the line.

Use 
$$y - b = m(x - a)$$
 with the point  $(-3,7)$  and the gradient  $-\frac{5}{2}$ 

$$y - b = m(x - a)$$

$$y - 7 = -\frac{5}{2}(x - (-3))$$

$$y - 7 = -\frac{5}{2}(x + 3)$$

$$y - 7 = -\frac{5}{2}x - \frac{15}{2}$$

$$y = -\frac{5}{2}x - \frac{1}{2}$$

Fully simplify  $\sqrt{27} - \sqrt{12}$ . (a) 12.

Rewrite each surd as a product that includes a square number

$$= \sqrt{9}\sqrt{3} - \sqrt{4}\sqrt{3}$$

Simplify

$$=3\sqrt{3}-2\sqrt{3}$$

Do the subtraction

$$=\sqrt{3}$$

Write  $\frac{15}{\sqrt{3}}$  with a rational denominator in its simplest form.

2

3

Multiply both sides by  $\frac{\sqrt{3}}{\sqrt{3}}$ 

$$\frac{15}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$
$$= \frac{15\sqrt{3}}{\sqrt{3}\sqrt{3}}$$

Simplify  $\sqrt{3}\sqrt{3}$ 

$$=\frac{15\sqrt{3}}{3}$$

Simplify the fraction

$$=5\sqrt{3}$$

- 13. At a florist shop, Steve buys 3 roses and 2 tulips for £9.40
  - Write an equation to represent this information. (a)

1

Define the variables (also acceptable to work in pounds not pence)

$$r = price \ of \ a \ rose \ in \ pence$$

$$t = price \ of \ a \ tulip \ in \ tulips$$

State equation (also acceptable to do in pounds not pence)

$$3r + 2t = 940$$

At the same florist shop, Natalie buys 2 roses and 4 tulips for £8.40

(b) Write an equation to represent this information. 1

State equation (using the same units as above, i.e. sticking with either pence or pounds)

$$2r + 4t = 840$$

State the two equations together

$$3r + 2t = 940$$
  
 $2r + 4t = 840$ 

Manipulate them to eliminate one variable (lots of ways to do this) for example, double the first equation

$$6r + 4t = 1880$$

Subtract the second equation from this

$$4r = 1040$$

Solve to find one variable

$$r = 260$$

Substitute to find the other variable

$$3(260) + 2t = 940$$
  
 $780 + 2t = 940$   
 $2t = 160$   
 $t = 80$ 

State the solution

A tulip costs 80 pence, a rose costs £2.60