Area Perimeter Volume

Example:

Using the formula for the volume of a cylinder $\quad V=\pi r^{2} h$ find the volume of a cylinder where $\mathrm{r}=5 \mathrm{~cm}$ and $\mathrm{h}=10 \mathrm{~cm}$.
Take $\pi=3.14$
Answer :

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =3.14 \times 5^{2} \mathrm{X} 10 \\
& =785 \mathrm{~cm}^{3}
\end{aligned}
$$

1. Find the volume of a cylinder where :
(a) $\mathrm{r}=4 \mathrm{~cm}$
$\mathrm{h}=10 \mathrm{~cm}$
$502.4 \mathrm{~cm}^{3}$
(b) $\mathrm{r}=3 \mathrm{~cm}$
$\mathrm{h}=5 \mathrm{~cm}$
$141.3 \mathrm{~cm}^{3}$
(c) $\mathrm{r}=2.5 \mathrm{~cm}$
$\mathrm{h}=4 \mathrm{~cm}$
$78.5 \mathrm{~cm}^{3}$
(d) $\mathrm{r}=3.4 \mathrm{~cm}$
$\mathrm{h}=20 \mathrm{~cm}$
$726.0 \mathrm{~cm}^{3}$
2. A glass is cylindrical in shape.

The circular top has a radius of 3.2 centimetres.
The height of the glass is 15 centimetres.
Find the volume of the glass.
Give your answer to the nearest cubic centimetre.

Example :
The formula for the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$
Find the volume of a sphere whose radius is 9 cm .

$$
\begin{aligned}
& \text { Answer } \\
& \begin{aligned}
\mathrm{V} & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} X 3.14 \times 9 \quad 3 \\
& =3052.1 \mathrm{~cm}^{3} \text { to } 1 \mathrm{dec} \text { place }
\end{aligned}
\end{aligned}
$$

3. Find the volume of the spheres where :
(a) $\mathrm{r}=3 \mathrm{~cm}$
(b) $\mathrm{r}=6 \mathrm{~cm}$
(c) $\mathrm{r}=2.5 \mathrm{~cm}$
$65.4 \mathrm{~cm}^{3}$
(d) $\mathrm{r}=5.7 \mathrm{~cm}$
$775.3 \mathrm{~cm}^{3}$
giving your answers correct to 1 decimal place.

To find the volume of a hemisphere,

 find the volume of the sphere then divide by 2 .
Example :

Find the volume of the hemisphere shown opposite.

Answer :

Diameter $=10 \mathrm{~cm}$
So $\quad r=5$

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \pi r^{3}=\frac{4}{3} \times 3.14 \times 5^{3}=523.3 \mathrm{~cm}^{3}
\end{aligned}
$$

So volume of hemisphere $=523.3 \div 2$

$$
=261.7 \mathrm{~cm}^{3} \text { correct to } 1 \text { decimal place } .
$$

4. Find the volume of these hemispheres in the same way :
(a) $\quad 16746.7 \mathrm{~cm}^{3}$

(c) $2093.3 \mathrm{~cm}^{3}$
(b) $\quad 452.2 \mathrm{~cm}^{3}$

(d) $1526.0 \mathrm{~cm}^{3}$

Example :
Volume of a cone $=\frac{1}{3} \pi r^{2} h$
Using the formula, find the volume of a cone where the radius is 6 cm and the height is 20 cm .
Answer: $V=1 / 3 \pi r^{2} \mathrm{~h}=1 / 3 \times 3.14 \times 6^{2} \mathrm{X} 20=753.6 \mathrm{~cm}^{3}$
5. In the same way find the volume of a cone where :
(a) $\mathrm{r}=4 \mathrm{~cm}$
$\mathrm{h}=12 \mathrm{~cm}$
201.0
(b) $\mathrm{r}=5 \mathrm{~cm}$
$\mathrm{h}=10 \mathrm{~cm}$
$261.7 \mathrm{~cm}^{3}$
(c) $\mathrm{r}=3 \mathrm{~cm}$
$\mathrm{h}=6.5 \mathrm{~cm}$
$61.2 \mathrm{~cm}^{3}$
(d) $\mathrm{r}=8.2 \mathrm{~cm}$
$\mathrm{h}=100 \mathrm{~cm}$
$7037.8 \mathrm{~cm}^{3}$

Example :

The shape opposite consists of a cone sitting on top of a hemisphere. Find :
(a) the volume od the cone
(b) the volume of the hemisphere
(c) the total volume.

Answer :

(a) diameter of semi-circle $=4 \mathrm{~cm}$ so $\mathrm{r}=2 \mathrm{~cm}$

$$
\mathrm{V}=1 / 3 \pi \mathrm{r}^{2} \mathrm{~h}=1 / 3 \mathrm{X} 3.14 \times 2^{2} \mathrm{X} 9=37.7 \mathrm{~cm}^{3}
$$

(b) Volume of sphere

$$
=\frac{4}{3} \pi r^{3}=\frac{4}{3} \times 3.14 \times 2^{3}=33.5 \mathrm{~cm}^{3}
$$

So volume of hemisphere $=33.5 \div 2$

$$
=16.8 \mathrm{~cm}^{3} \text { correct to } 1 \text { decimal place } .
$$

(c) Total volume

$$
=37.7+16.8=54.5 \mathrm{~cm}^{3}
$$

6. Find the volume of each of these shapes :
(a)

$65.4 \mathrm{~cm}^{3}$
$32.7 \mathrm{~cm}^{3}$
$98.1 \mathrm{~cm}^{3}$
(b)

$256.4 \mathrm{~cm}^{3}$
$89.8 \mathrm{~cm}^{3}$
$346.2 \mathrm{~cm}^{3}$
(c)

$84.8 \mathrm{~cm}^{3}$
$56.5 \mathrm{~cm}^{3}$
$141.3 \mathrm{~cm}^{3}$
(d)

$7.3 \mathrm{~cm}^{3}$
$2.1 \mathrm{~cm}^{3}$
$9.4 \mathrm{~cm}^{3}$

Example:

The diagram shows a bread-bin.
The shaded side is made up from a rectangle and a quarter circle
(a) Calculate the shaded area.
(b) Calculate the volume of the bread-bin.
(c) Calculate the length of the black strip around the left side of the bin

Answer :
(a) Area of rectangle $=\mathrm{L}$ X B $=10 \times 15$

$$
\begin{aligned}
& \text { Area of circle } \begin{aligned}
A & =\pi r^{2} \\
& =3.14 \times 10^{2} \\
& =314 \mathrm{~cm}^{2} \\
\text { Area of } 1 / 4 \text { circle } & =314 \div 4 \\
& =\underline{78.5 \mathrm{~cm}^{2}}
\end{aligned}
\end{aligned}
$$

$$
\mathrm{r}=10 \mathrm{~cm}
$$

Shaded Area of side

$$
\begin{aligned}
& =150+78.5 \\
& =\underline{228.5 \mathrm{~cm}^{2}}
\end{aligned}
$$

(b) Volume of tin = Area of side X Length of tin

$$
\begin{aligned}
& =228.5 \mathrm{X} 40 \\
& =9140 \mathrm{~cm}^{3}
\end{aligned}
$$

(c) Circumference of circle

$$
\mathrm{C}=\pi \mathrm{D}=3.14 \times 20=62.8 \mathrm{~cm} \quad \mathrm{D}=2 \mathrm{r}=2 \times 10 \quad=20
$$

$$
\text { Length of arc }=62.8 \div 4 \quad=15.7 \mathrm{~cm}
$$

So length of strip $=\mathrm{L}+\mathrm{B}+25+\operatorname{arc}=15+10+25+15.7=\underline{65.7} \mathrm{~cm}$
7. In each of the following, as in the example :
(a) Calculate the shaded area.
(b) Calculate the volume of the bread-bin.
(c) Calculate the length of the black strip around the left side of the bin.

A

$$
\begin{aligned}
224+201 & =425 \mathrm{~cm}^{2} \\
425 \times 45 & =19125 \mathrm{~cm}^{3} \\
14+16+30+25.1 & =85.1 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
96+113 & =209 \mathrm{~cm}^{2} \\
299 \times 30 & =6270 \mathrm{~cm}^{3} \\
8+12+20+18.8 & =58.8 \mathrm{~cm}
\end{aligned}
$$

D

$$
\begin{aligned}
216+254.3 & =470.3 \mathrm{~cm}^{2} \\
470.3 \times 50 & =23515 \mathrm{~cm}^{3} \\
12+18+30+28.3 & =88.3 \mathrm{~cm}
\end{aligned}
$$

Mrs McLaughlin
Mr Mailley

