2014 Mathematics

Higher

Marking Instructions

© Scottish Qualifications Authority 2014

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

2014 Mathematics

Higher

Marking Instructions
Exam date: 6 May 2014

CONTENTS

Page
General Marking Principles 3
Marking Instructions for each Question 7

Strictly Confidential

These instructions are strictly confidential and, in common with the scripts you will view and mark, they must never form the subject of remark of any kind, except to Scottish Qualifications Authority staff.

Finalised Marking Instructions will be published on SQA's website in due course.

General Comments

These marking instructions are for use with the 2014 Higher Mathematics Examination.
For each question the marking instructions are in two sections, namely Illustrative Scheme and Generic Scheme. The Illustrative Scheme covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general markers should use the Illustrative Scheme and only use the Generic Scheme where a candidate has used a method not covered in the Illustrative Scheme.

All markers should apply the following general marking principles throughout their marking:
1 Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than deducted for what is wrong.

2 Award one mark for each *. There are no half marks.

3 The mark awarded for each part of a question should be entered in the outer right hand margin, opposite the end of the working concerned. The marks should correspond to those on the question paper and these marking instructions. Only the mark, as a whole number, should be written.

Marks in this column whole numbers only

Do not record marks on scripts in this manner.

4 Where a candidate has not been awarded any marks for an attempt at a question, or part of a question, 0 should be written in the right hand margin against their answer. It should not be left blank. If absolutely no attempt at a question, or part of a question, has been made, ie a completely empty space, then NR should be written in the outer margin.

5 IT IS ESSENTIAL that every page of a candidate's script should be checked for working. Unless blank, every page which is devoid of a marking symbol should have a tick placed in the bottom right hand margin.

6 Where the solution to part of a question is fragmented and continues later in the script, the marks should be recorded at the end of the solution. This should be indicated with a down arrow (\downarrow), in the margin, at the earlier stages.

7 Working subsequent to an error must be followed through, with possible full marks for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.

8 As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.

9 Marking Symbols

No comments or words should be written on scripts. Please use the following symbols and those indicated on the welcome letter and from comment 6 on the previous page.

A tick should be used where a piece of working is correct and gains a mark. Markers must check through the whole of a response, ticking the work only where a mark is awarded.

At the point where an error occurs, the error should be underlined and a cross used to
\qquad
X indicate where a mark has not been awarded. If no mark is lost the error should only be underlined, i.e. a cross is only used where a mark is not awarded.

A cross-tick should be used to indicate "correct" working where a mark is awarded as a result of follow through from an error.

A double cross-tick should be used to indicate correct working which is irrelevant or insufficient to score any marks. This should also be used for working which has been eased.

A tilde should be used to indicate a minor error which is not being penalised, e.g. bad form.

This should be used where a candidate is given the benefit of the doubt.
A roof should be used to show that something is missing, such as part of a solution or a crucial step in the working.

These will help markers to maintain consistency in their marking and are essential for the later stages of SQA procedures.
The examples below illustrate the use of the marking symbols .

Example 1
 $y=x^{3}-6 x^{2}$
 $\frac{d y}{d x}=3 x^{2}-12 x$
 $3 x^{2}-12=0^{x}$
 * $\sqrt{1}$
 $e^{2} X$
 * x
 $*^{4}$ ヘ
 * \boldsymbol{x}

Example 3
$3 \sin x-5 \cos x$
$k \sin x \cos a-\cos x \sin a \sqrt{ }{ }^{2}$
$k \cos a=3, k \sin a=5 \quad \sqrt{ }{ }^{2}$

Example 2
$\mathrm{A}(4,4,0), \mathrm{B}(2,2,6), \mathrm{C}(2,2,0)$
$\overrightarrow{\mathrm{AB}}=\underline{\mathbf{b}+\mathbf{a}}=\left(\begin{array}{l}6 \\ 6 \\ 6\end{array}\right)$
$\overrightarrow{\mathrm{AC}}=\left(\begin{array}{l}6 \\ 6 \\ 0\end{array}\right)$
Example 4

Since the remainder is $0, x-4$ must be a factor. $\sqrt{ } \bullet^{3}$

$$
\begin{aligned}
& \left(x^{2}-x-2\right) \quad \sqrt{ } \bullet^{4} \\
& (x-4)(x+1)(x-2) \quad \sqrt{ } \bullet^{5} \\
& x=4 \text { or } x=-1 \text { or } x=2 \quad \checkmark \bullet^{6}
\end{aligned}
$$

Page 4

10 In general, as a consequence of an error perceived to be trivial, casual or insignificant, e.g. $6 \times 6=12$, candidates lose the opportunity of gaining a mark. But note example 4 in comment 9 and the second example in comment 11.

11 Where a transcription error (paper to script or within script) occurs, the candidate should be penalised, e.g.

> Exceptionally this error is not treated as a transcription error as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt.

12 Cross marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example: Point of intersection of line with curve

$$
\begin{array}{lcc}
\text { Illustrative Scheme: } & x=2, x=-4 \\
& \text { • } y=5, y=-7
\end{array} \quad \text { Cross marked: } \begin{aligned}
& *=2, y=5 \\
& \\
&
\end{aligned}
$$

Markers should choose whichever method benefits the candidate, but not a combination of both.
13 In final answers, numerical values should be simplified as far as possible.
Examples: $\frac{15}{12}$ should be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ should be simplified to 43
$\frac{15}{03}$ should be simplified to $50 \quad \frac{6}{3}$ should be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to $8 \longrightarrow \begin{aligned} & \text { The square root of perfect squares up } \\ & \text { to and including } 100 \text { must be known }\end{aligned}$ to and including 100 must be known.

14 Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide in marking similar nonroutine candidate responses.

15 Unless specifically mentioned in the marking instructions, the following should not be penalised:

- Working subsequent to a correct answer;
- Correct working in the wrong part of a question;
- Legitimate variations in numerical answers, e.g. angles in degrees rounded to nearest degree;
- Omission of units;
- Bad form;
- Repeated error within a question, but not between questions or papers.

16 In any 'Show that . . .' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow through from a previous error.

17 All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. All working must be checked: the appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.

18 In the exceptional circumstance where you are in doubt whether a mark should or should not be awarded, consult your Team Leader (TL).

19 Scored out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.

20 Where a candidate has made multiple attempts using the same strategy, mark all attempts and award the lowest mark.
Where a candidate has tried different strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark. For example:

Strategy 1 attempt 1 is worth 3 marks	Strategy 2 attempt 1 is worth 1 mark
Strategy 1 attempt 2 is worth 4 marks	Strategy 2 attempt 2 is worth 5 marks
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.
21 It is of great importance that the utmost care should be exercised in totalling the marks.
A tried and tested procedure is as follows:

Step 1 Manually calculate the total from the candidate's script.
Step 2 Check this total using the grid issued with these marking instructions.
Step 3 In SCORIS, enter the marks and obtain a total, which should now be compared to the manual total.

This procedure enables markers to identify and rectify any errors in data entry before submitting each candidate's marks.

22 The candidate's script for Paper 2 should be placed inside the script for Paper 1, and the candidate's total score (i.e. Paper 1 Section B + Paper 2) written in the space provided on the front cover of the script for Paper 1.

23 In cases of difficulty, covered neither in detail nor in principle in these instructions, markers should contact their TL in the first instance. A referral to the Principal Assessor (PA) should only
be made in consultation with the TL. Further details of PA Referrals can be found in The General Marking Instructions.

	Question	Answer
	1	C
	2	B
	3	A
	4	D
	5	D
	6	A
	7	C
	8	D
	9	B
	10	C
	11	C
	12	A
	13	B
	14	D
	15	B
	16	C
	17	B
	18	C
	19	A
	20	D
Summary	A	4
	B	5
	C	6
	D	5

Paper 1- Section B

Question		ric Schem	tive	
21	A curve has equation $y=3 x^{2}-x^{3}$.			
		Find the coordinates of the stationary points on this curve and determine their nature.		
Notes:				
1. \bullet^{2} is not available for statements such as ' $\frac{d y}{d x}=0$ ' with no other working. 2. Accept $3 x^{2}-6 x=0$ for \bullet^{2}. 3. For candidates using a nature table, the minimum response for \bullet^{5} is: x values 0 and $2 ; \frac{d y}{d x}$ or expression $6 x-3 x^{2} ;$ signs and zeroes; shape. 4. For candidates who differentiate correctly but then solve $\frac{d y}{d x}=0$ incorrectly, \bullet^{4} may be awarded as a follow through mark. \bullet^{5} and \bullet^{6} are not available if a nature table has been used, but may be awarded where candidates have used the $2^{\text {nd }}$ derivative. 5. For candidates who differentiate incorrectly \bullet^{3} and $\bullet{ }^{4}$ may be awarded as follow through marks. \bullet and are not available if a nature table has been used, but may be awarded where candidates have used the $2^{\text {nd }}$ derivative. 6. At ${ }^{\bullet}$ stage accept min at $x=0$ and max at $x=2$. 7. Candidates who find the x-coordinates of the SPs correctly but correctly process only one of these to determine its nature, gain \bullet^{6} but not \bullet^{5}.				

Commonly Observed Responses:

Candidate A

$\frac{d^{2} y}{d x^{2}}=6-6 x$
at $x=0, \frac{d^{2} y}{d x^{2}}>0$, at $x=2, \frac{d^{2} y}{d x^{2}}<0 \quad \bullet 5 \quad \sqrt{ }$
hence minimum SP at $x=0$, maximum SP at $x=2 \quad \bullet^{6} \quad \sqrt{ }$

Candidate B

$$
\begin{array}{lll}
\frac{d y}{d t}=6 x-3 x^{2}=0 & \bullet{ }^{1} & \checkmark \bullet^{2} \checkmark \\
3 x(3-x)=0 & & \\
x=0, x=3 & \bullet 3 & X \\
y=0, y=0 & \bullet 4 & \swarrow
\end{array}
$$

Case (i)

$\frac{d^{2} y}{c x^{2}}=6-6 x$
$x=0 \Rightarrow \frac{d^{2} y}{d x^{2}}>0 \Rightarrow$ Minimum SP
$x=3 \Rightarrow \frac{d^{2} y}{d x^{2}}<0 \Rightarrow$ Maximum SP

Case (ii)
$\frac{x \mid \rightarrow 0 \rightarrow 3 \rightarrow}{\frac{d}{d x}}-0 ?^{2} ?+\quad \bullet^{5} \mathrm{X} \quad \bullet^{6} \mathrm{X}$
? inconsistent. Different signs for $6 x-3 x^{2}$ or $3 x(3-x)$

8. \bullet^{7} accept $3 x^{2}-x^{3}=0$ and correctly annotated diagram with 0,3 and no other intercepts marked on sketch.
9. The minimum required for \bullet^{8} is a cubic curve, consistent with the SPs found in part (a) and appropriate number of x intercepts appearing on their sketch. It must be possible to determine the coordinates of the SPs from the sketch.

Commonly Observed Responses:

The following are acceptable for \bullet^{8}

Do not accept the following for

Blank Page

Version 4

Page 15

Notes:

4. Other valid strategies:
a Converse of Pythagoras' Theorem:
${ }^{6}{ }^{6}$ process lengths, $\mathrm{PT}=\mathrm{QT}=\sqrt{20}, \mathrm{PQ}=\sqrt{40}$
${ }^{\circ}{ }^{7}$ apply converse and communicate result clearly.
b Cosine Rule:
\bullet^{6} process lengths, \bullet^{7} apply cosine rule to obtain angle 90° and communicate result clearly.

Commonly Observed Responses:

Candidate B	
$\mathrm{T}(-1,2)$	$\bullet 5 \checkmark$
$m=\frac{1}{2} ; m=-2$	$\bullet 6$
$m_{1} \times m_{2}=-1$	$\bullet 7$

No link between required condition and gradients found.

Candidate C

$\mathrm{T}(-1,2)$
-5 $\sqrt{ }$
$m_{1}=\frac{1}{2} ; m_{2}=-2$
${ }^{\bullet} \sqrt{ } \sqrt{ }$
$m_{1} \times m_{2}=-1$
-7 $\sqrt{ }$
Required condition is linked to gradients found.

23 c| A second circle C_{2} passes through P, Q and T. Find the equation of C_{2}.

\bullet ss knows to find and states centre - 9 pd calculate radius ${ }^{10}$ ic state equation of circle	\bullet centre $(2,1)$ - \quad radius $=\sqrt{10}$ - ${ }^{10}(x-2)^{2}+(y-1)^{2}=10$	
-8 ss substitute points into general equation of circle	Alternative Method $\text { . } \begin{aligned} & x^{2}+y^{2}+2 g x+2 f y+c=0 \\ & 25+6 g+8 f+c=0 \\ & 5+2 g-4 f+c=0 \\ & 5-2 g+4 f+c=0 \end{aligned}$	
- 9 pd find f or g or c ${ }^{-10}$ ic state values of f, g and e	- $\quad f=-1$, or $g=-2$, or $c=-5$ -10 $f=-1, g=-2, c=-5$	

Notes:

5. $(\sqrt{10})^{2}$ must be simplified to gain \bullet^{10}
6. For candidates who find P and Q correctly in part (a), award \bullet^{8} if centre (2,1) appears without working.
7. For the mid-point of PQ being $(2,1), \bullet^{8}$ is available unless subsequent working indicates that this is not the intended centre.
8. $\quad{ }^{9}$ is only available as a result of PQ being a diameter, or, using a valid strategy to find the centre eg midpoint of PQ or point of intersection of the perpendicular bisectors of PT and TQ. \bullet^{10} is still available.
9. Where an incorrect centre or an incorrect radius appear ex nihilo \bullet^{10} is not available.

Question	Generic Scheme	Illustrative Scheme	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$
24 Two When line (6,5) Find	and y, are related by the lotted against x, a straigh gh the points $(0,2)$ and as shown in the diagram. f k and a.	ation $y=k a a^{x}$	
- ${ }^{2} \quad \mathrm{pd}$ - 3 pd $\bullet \quad \mathrm{pd}$ - 5 pd - 2 pd - $3 \quad \mathrm{pd}$ $\bullet{ }^{5} \quad \mathrm{pd}$	both sides of the equation f logarithms f logarithms equation of the line nential form indices	Method 1 - $\quad \log _{9} y=\log _{9} k a^{z}$ $\bullet \quad \log _{9} y=\log _{9} k+\log _{9} a^{x}$ -3 $\quad \log _{9} y=\log _{9} k+x \log _{9} a$ ${ }^{4} \quad \log _{y} k-2, k-81$ or $k=9^{2}=81$ -5 $\quad \log _{9} a=\frac{1}{2}, a=3$ or $a=9^{1 / 2}=3$ Method 2 -1 $\quad \log _{9} y=\frac{1}{2} x+2$ - $\quad y=9^{\frac{1}{2} x+2}$ - $\quad y=9^{\frac{1}{2}=g^{2}}$ -4 $k=81$ -5 $\quad a=3$	5
Notes:			
1. Candidates who start with $\bullet^{3} \log _{9} y=\log _{9} k+x \log _{9} a$ also gain \bullet^{1} and \bullet^{2}. 2. In Method 1, base 9 must appear by \bullet^{4} stage, for \bullet^{1} to be awarded. 3. For $k=81$ and $a=3$ with spurious or no working, \bullet^{4} and \bullet^{5} are not available.			

Commonly Observed Responses:

Candidate A

$\log y=\log \operatorname{la} a^{z}$	$\bullet 1 \times$	See Note 2
$\log y=\log k+\log a^{z}$	\bullet	
$\log y=\log k+x \log a$	$\bullet \checkmark$	
$k=81$	$\bullet 4$	No evidence of which base is being used.
$a=3$	$\bullet 5$	Answers at both \bullet^{4} and \bullet^{5} are consistent with using base 9.

Candidate B: A combination of Method 1 and Method 2.
M2 $\quad \log _{9} y=\frac{1}{2} x+2$
-1 1

M1

$\bullet 2$ •3
equating gradients and intercepts
$\log _{p} a=\frac{1}{2}$
$a=9^{\frac{1}{2}}=3$
$\log _{9} k=2$
$k=9^{2}=81$

Paper 2

Version 4

Blank Page

Question	Generic Scheme	Illustrative Scheme	Max Mark

4 Six identical cuboids are placed with their edges parallel to the coordinate axes as shown in the diagram.
A and B are the points $(8,0,0)$ and $(11,4,2)$ respectively.

Throughout this question treat coordinates written as components, and vice versa, as bad form.

Notes:

1. Accept $x-11, y-12$ and $z-6$ for \bullet^{1} and $x-8, y-8$ and $z-4$ for \bullet^{2}.
2. For candidates who write the coordinates as Cartesian triples and omit brackets in both cases, \bullet^{2} is not available.
$4 \quad$ b \quad Determine the components of $\overrightarrow{\mathrm{CB}}$ and $\overrightarrow{\mathrm{CD}}$.

$\bullet 3$	pd	finds CB
\bullet		
	pd	finds $\overline{\mathrm{CD}}$

-3 $\left(\begin{array}{c}0 \\ -8 \\ -4\end{array}\right)$

Notes:

3. For candidates who find both $\overrightarrow{\mathrm{BC}}$ and $\overrightarrow{\mathrm{DC}}$, only \bullet^{4} is available (repeated error).

Candidate C		Candidate D	
$\left[\frac{(3 x+4)^{\frac{1}{2}}}{1 / 2} \times 3\right]_{4}^{2}=2$	$\bullet \checkmark \cdot{ }^{2} \mathrm{X}$	$\left[-\frac{3}{2}(3 x+4)^{-3 / 2}\right]_{4}^{4}=2$	${ }^{1} \mathrm{X} \cdot{ }^{2} \mathrm{X}$
$\left[\frac{2}{3}(3 x+4)^{\frac{1}{2}}\right]_{4}^{1}=2$		$-\frac{3}{2}(3 t+4)^{-3 / 2}-\left(-\frac{3}{2} \times 16^{-K} / 2\right)=2$	- ${ }^{1}$
$\left[\frac{2}{3}(3 t+4)^{\frac{1}{2}}\right]-\left[\frac{2}{3}(3(4)+4)^{\frac{1}{2}}\right]=2$	${ }^{3} \mathrm{X}$	$(3 t+4)^{7 /}=-\frac{192}{253}$	- ${ }^{4}$
$(3 t+4)^{\frac{1}{2}}=7$	$\cdot 4 \backslash$	decimal equivalent not accepted	
$t=15$. 5	$t=-1.056$	- 5

Question			Generic Scheme	Illustrative Scheme	
6	Solve the equation $\sin x-2 \cos 2 x=1$ for $0 \leq x<2 \pi$.				
	$\bullet 1$ $\bullet{ }^{2}$ $\bullet 3$ $\bullet 4$ -5	SS SS SS ic pd	use correct double angle formula arrange in standard quadratic form start to solve reduce to equations in $\sin x$ only process to find solutions in given domain	- ${ }^{1} \sin x-2\left(1-2 \sin ^{2} x\right)$ stated or implied by \bullet^{2} $\bullet^{2} 4 \sin ^{2} x+\sin x-3=0$ -3 $(4 \sin x-3)(\sin x+1)=0$ OR $\frac{-1 \pm \sqrt{(1)^{2}-4 \times 4 \times(-3)}}{2 \times 4}$ $\bullet^{4} \sin x=\frac{3}{4}$ and $\sin x=-1$ $\cdot 50.848,2.29$ and $\frac{3 \pi}{2}$ OR -4 $\sin x=\frac{3}{4}$ and $x=0 \cdot 848,2 \cdot 29$ $\bullet 5 \sin x=-1$, and $x=\frac{3 \pi}{2}$	5
Notes:					
1. \bullet^{1} is not available for simply stating $\cos 2 A=1-2 \sin ^{2} A$ with no further working. 2. In the event of $\cos ^{2} x-\sin ^{2} x$ or $2 \cos ^{2} x-1$ being substituted for $\cos 2 x, \bullet^{1}$ cannot be awarded until the equation reduces to a quadratic in $\sin x$. 3. Substituting $1-2 \sin ^{2} A$ or $1-2 \sin ^{2} \varepsilon$ for $\cos 2 \alpha$ at \bullet^{1} stage should be treated as bad form provided the equation is written in terms of x at stage \bullet^{2}. Otherwise, \bullet^{1} is not available. 4. ' $=0$ ' must appear by \bullet^{3} stage for \bullet^{2} to be awarded. However, for candidates using the quadratic formula to solve the equation, ' $=0$ ' must appear at \bullet^{2} stage for \bullet^{2} to be awarded. 5. Candidates may express the equation obtained at \bullet^{2} in the form $4 s^{2}+s-3=0$ or $4 x^{2}+x-3=0$. In these cases, award \bullet^{3} for $(4 s-3)(s+1)=0$ or $(4 x-3)(x+1)=0$. However, \bullet^{4} is only available if $\sin x$ appears explicitly at this stage. 6. $\bullet 4$ and \bullet are only available as a consequence of solving a quadratic equation. 7. \bullet^{3}, \bullet^{4} and \bullet^{5} are not available for any attempt to solve a quadratic written in the form $a x^{2}+b x=c$. 8. \bullet^{5} is not available to candidates who work in degrees and do not convert their solutions into radian measure. 9. ON THIS OCCASION, accept any answers which round to $0 \cdot 85,2 \cdot 3$ and $4 \cdot 7$. 10. $\sin x+4 \sin ^{2} x-3=0$ does not gain \bullet^{2}, unless \bullet^{3} is awarded.					

Commonly Observed Responses:

Candidate A

$\int_{0}^{4}\left(2 x-\left(6 x-x^{2}\right)\right) d x$
$\bullet^{2} X$
$=\frac{1}{3} x^{3}-2 x^{2}$
$=-10 \frac{2}{3}$ cannot be negative so $=10 \frac{2}{3} \cdot{ }^{4} \mathrm{X}$
however $\ldots=-10 \frac{2}{3}$ so Area $=10 \frac{2}{3} \quad \bullet 4 \checkmark$
Area $=3200 \mathrm{mi}{ }^{2}$
$.5 x$

Candidate B

$2 x=6 x-x^{2} \Rightarrow r=0.4 \quad \bullet \checkmark$
Shaded area
$=$ area under parabola $-\left(\mathrm{A}_{2}+\mathrm{A}_{3}\right)$
$=\int_{0}^{6}\left(6 x-x^{2}\right) d x-\left[\mathrm{A}_{2}+\int_{4}^{6}\left(6 x-x^{2}\right) d x\right] \cdot{ }^{2} \checkmark$
Stated or implied by \bullet^{4}
Area under parabola $=36, \mathrm{~A}_{2}=16$ and $\mathrm{A}_{3}=\frac{28}{3} \quad \bullet^{3} \mathrm{~J}$
Shaded area $=36-\left(16+\frac{28}{3}\right)=\frac{32}{3} \quad \bullet 4 \checkmark$

Candidate C

Part (a)
$x=0, x=6$
${ }^{1}$ X
$\int\left(\left(6 x-x^{2}\right)-2 x\right) d x$
$\cdot x$
$\left[2 x^{2}-\frac{1}{3} x^{3}\right]_{0}^{6}$

- $1 x$
$\left(2 \times 6^{2}-\frac{1}{3} \times 6^{3}\right)-(0)=0$
X
\Rightarrow Area $=0 \times 300=0 \mathrm{~m}^{2}$
$.5 x$

Candidate C

Part (a)
$a=v^{\prime}(t)$ or equivalent
$a=4 \sin \left(2 t-\frac{\pi}{2}\right) \quad \bullet^{2} X \quad \bullet^{3} X$

Part (b)
$a(10)=4 \sin \left(20-\frac{\pi}{2}\right)=-1.63$
<0, So decreasing
Only as a consequence of \bullet^{1} in part (a)

Question		Generic Scheme	Illustrative Scheme	Max
9	Velocity is defined as the rate of change of displacement.			
	c	Determine a formula for $s(t)$, the dis $s(t)=4$ when $t=0$.	ement of the object, given that	
		- ${ }^{6}$ ic know to integrate - $7 \quad \mathrm{pd} \quad$ integrate correctly -8 ic determine constant and complete	$\bullet \quad s(t)=\int v(t) d t$ - $7 \quad s(t)=4 \sin \left(2 t-\frac{\pi}{2}\right)+c$ -8 $\quad c=8$ so $s(t)=4 \sin \left(2 t-\frac{\pi}{2}\right)+8$	3
Notes:				
4. \bullet^{7} and \bullet^{8} are not available to candidates who work in degrees. However, accept $\int 8 \cos (2 t-90) d t$ for \bullet^{6}.				

[END OF MARKING INSTRUCTIONS]

