

2014 Mathematics

Higher

Marking Instructions

© Scottish Qualifications Authority 2014

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Version 4 26/05/2014

2014 Mathematics Higher Marking Instructions

Exam date: 6 May 2014

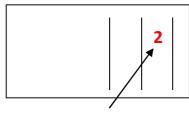
CONTENTS

	Page
General Marking Principles	3
Marking Instructions for each Question	7

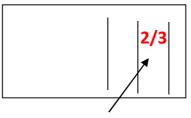
Strictly Confidential

These instructions are **strictly confidential** and, in common with the scripts you will view and mark, they must never form the subject of remark of any kind, except to Scottish Qualifications Authority staff.

Finalised Marking Instructions will be published on SQA's website in due course.


General Comments

These marking instructions are for use with the 2014 Higher Mathematics Examination.


For each question the marking instructions are in two sections, namely **Illustrative Scheme** and **Generic** Scheme. The **Illustrative Scheme** covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general markers should use the **Illustrative Scheme** and only use the **Generic Scheme** where a candidate has used a method not covered in the **Illustrative Scheme**.

All markers should apply the following general marking principles throughout their marking:

- 1 Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than deducted for what is wrong.
- 2 Award one mark for each •. There are **no** half marks.
- **3** The mark awarded for **each part** of a question should be entered in the **outer** right hand margin, opposite the end of the working concerned. The marks should correspond to those on the question paper and these marking instructions. Only the mark, **as a whole number**, should be written.

Marks in this column whole numbers only

Do not record marks on scripts in this manner.

- 4 Where a candidate has not been awarded any marks for an attempt at a question, or part of a question, 0 should be written in the right hand margin against their answer. It should not be left blank. If absolutely no attempt at a question, or part of a question, has been made, ie a completely empty space, then NR should be written in the outer margin.
- **5** IT IS ESSENTIAL that every page of a candidate's script should be checked for working. Unless blank, every page which is devoid of a marking symbol should have a tick placed in the bottom right hand margin.
- 6 Where the solution to part of a question is fragmented and continues later in the script, the marks should be recorded at the end of the solution. This should be indicated with a down arrow (ψ), in the margin, at the earlier stages.
- 7 Working subsequent to an error **must be followed through**, with possible full marks for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
- **8** As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.

9 Marking Symbols

No comments or words should be written on scripts. Please use the following symbols and those indicated on the welcome letter and from comment 6 on the previous page.

A tick should be used where a piece of working is correct and gains a mark. Markers must check through the whole of a response, ticking the work **only** where a mark is awarded.

At the point where an error occurs, the error should be underlined and a cross used to indicate where a mark has not been awarded. If no mark is lost the error should only be underlined, i.e. a cross is only used where a mark is not awarded.

A cross-tick should be used to indicate "correct" working where a mark is awarded as a result of **follow through** from an error.

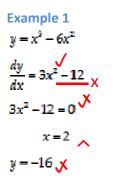
A double cross-tick should be used to indicate correct working which is irrelevant or insufficient to score any marks. This should also be used for working which has been **eased**.

A tilde should be used to indicate a minor error which is not being penalised, e.g. **bad** form.

This should be used where a candidate is given the **benefit of the doubt**.

A roof should be used to show that something is missing, such as part of a solution or a crucial step in the working.

These will help markers to maintain consistency in their marking and are essential for the later stages of SQA procedures.


The examples below illustrate the use of the marking symbols .

•¹ 🗸

а х

🔉 🔊

** ^ •* V

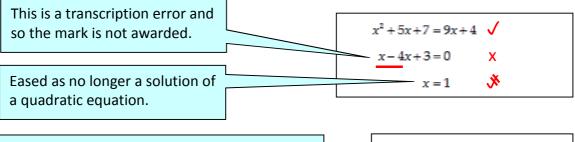
Example 3

 $3 \sin x - 5 \cos x$ $k \sin x \cos a - \cos x \sin a \checkmark \bullet^{*}$ $k \cos a = 3, k \sin a = 5 \checkmark \bullet^{2}$

Example 2

$$A(4,4,0), B(2,2,6), C(2,2,0)$$

$$\overline{AB} = \underline{\mathbf{b}} + \underline{\mathbf{a}} = \begin{pmatrix} 6\\ 6\\ 6\\ 6 \end{pmatrix} \times \mathbf{x}$$


$$\overline{AC} = \begin{pmatrix} 6\\ 6\\ 0 \end{pmatrix}$$

Example 4

10 In general, as a consequence of an error perceived to be trivial, casual or insignificant, e.g. $6 \times 6 = 12$,

candidates lose the opportunity of gaining a mark. But note example 4 in comment 9 and the second example in comment 11.

11 Where a transcription error (paper to script or within script) occurs, the candidate should be penalised, e.g.

Exceptionally this error is not treated as a transcription error as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt. $x^2 + 5x + 7 = 9x + 4$ x - 4x + 3 = 0 (x - 3)(x - 1) = 0 x = 1 or 3

12 Cross marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example: Point of intersection of line with curve

Illustrative Scheme: •² x=2, x=-4 Cross marked: •² x=2, y=5•⁶ y=5, y=-7 •⁶ x=-4, y=-7

Markers should choose whichever method benefits the candidate, but **not** a combination of both.

- **13** In final answers, numerical values should be simplified as far as possible. Examples: $\frac{15}{12}$ should be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$ $\frac{43}{1}$ should be simplified to 43 $\frac{15}{0\cdot3}$ should be simplified to 50 $\frac{4}{5}$ should be simplified to $\frac{4}{15}$ $\sqrt{64}$ must be simplified to 8 The square root of perfect squares up to and including 100 must be known.
- 14 Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide in marking similar non-routine candidate responses.
- **15** Unless specifically mentioned in the marking instructions, the following should not be penalised:
 - Working subsequent to a correct answer;
 - Correct working in the wrong part of a question;
 - Legitimate variations in numerical answers, e.g. angles in degrees rounded to nearest degree;
 - Omission of units;
 - Bad form;

- Repeated error within a question, but not between questions or papers.
- **16** In any 'Show that . . .' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow through from a previous error.
- 17 All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. All working must be checked: the appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
- **18** In the **exceptional** circumstance where you are in doubt whether a mark should or should not be awarded, consult your Team Leader (TL).
- **19** Scored out working which **has not been replaced** should be marked where still legible. However, if the scored out working **has been replaced**, only the work which has not been scored out should be marked.
- **20** Where a candidate has made multiple attempts using the same strategy, mark all attempts and award the lowest mark.

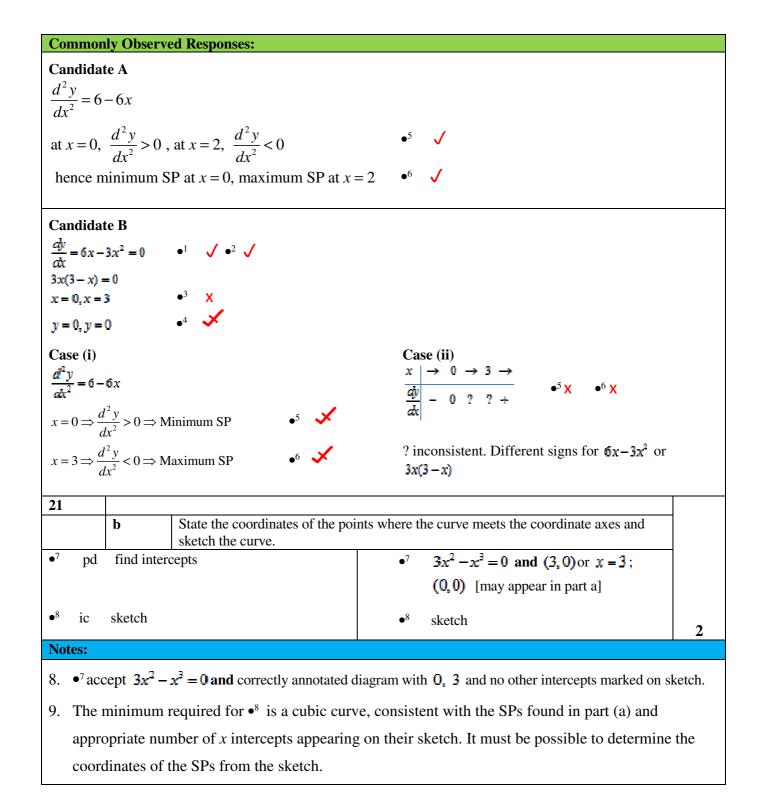
Where a candidate has tried different strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark. For example:

Strategy 1 attempt 1 is worth 3 marks	Strategy 2 attempt 1 is worth 1 mark
Strategy 1 attempt 2 is worth 4 marks	Strategy 2 attempt 2 is worth 5 marks
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

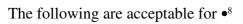
In this case, award 3 marks.

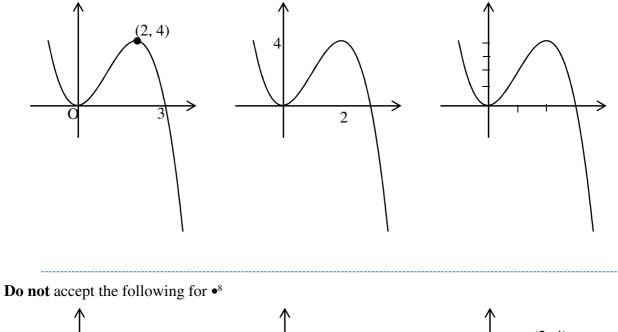
- **21** It is of great importance that the utmost care should be exercised in totalling the marks. A tried and tested procedure is as follows:
 - Step 1 Manually calculate the total from the candidate's script.
 - Step 2 Check this total using the grid issued with these marking instructions.
 - Step 3 In SCORIS, enter the marks and obtain a total, which should now be compared to the manual total.

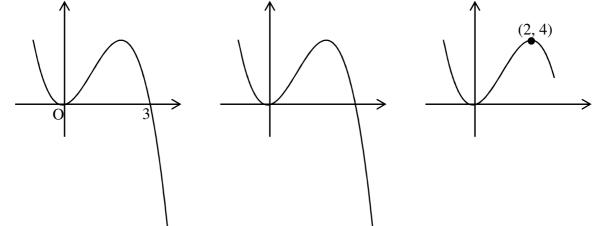
This procedure enables markers to identify and rectify any errors in data entry before submitting each candidate's marks.

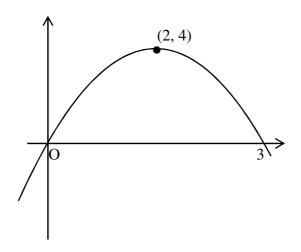

- 22 The candidate's script for Paper 2 should be placed inside the script for Paper 1, and the candidate's total score (i.e. Paper 1 Section B + Paper 2) written in the space provided on the front cover of the script for Paper 1.
- **23** In cases of difficulty, covered neither in detail nor in principle in these instructions, markers should contact their TL in the first instance. A referral to the Principal Assessor (PA) should only

be made in consultation with the TL. Further details of PA Referrals can be found in The General Marking Instructions.


	<u>Question</u>	<u>Answer</u>
	1	С
	2	В
	3	Α
	4	D
	5	D
	6	Α
	7	С
	8	D
	9	В
	10	С
	11	С
	12	Α
	13	В
	14	D
	15	В
	16	С
	17	В
	18	С
	19	Α
	20	D
<u>Summary</u>	Α	4
	В	5
	С	6
	D	5


Paper 1- Section B


Question		Generic Scheme	Illustrative Scheme		
21	A cur	the equation $y = 3x^2 - x^3$.			
	a	Find the coordinates of the stationary poir their nature.	its on this curve and determine		
• ¹	ss ki	now to differentiate and one term correct	• = $6x$ or = $-3x^2$		
• ²	ss th	ne other term correct and set derivative to 0	• ² $6x - 3x^2 = 0$ stated explicitly		
•3		olve $\frac{dy}{dx} = 0$	$\bullet^3 \bullet^4$ $\bullet^3 0 2$ $\bullet^4 0 4$		
• ⁴	pd e	valuate y coordinates	•4 0 4		
●5	pd ju	stify nature of stationary points	• ⁵ use 2^{nd} derivative or nature table		
•6	ic in	terpretation	• ⁶ min. at (0,0) and max. at (2,4)	6	
No	tes:				
1.	• ² is not	available for statements such as $\frac{dy}{dx} = 0$, w	ith no other working.		
2.	Accept	$3x^2 - 6x = 0$ for \bullet^2 .	0 2		
3.	For cand	lidates using a nature table, the minimum res	ponse for \bullet^5 is:		
	<u>x</u> value	es 0 and 2; $\frac{dy}{dx}$ or expression $6x - 3x^2$; sign	is and zeroes; shape. $\frac{d}{dt} = 0 + 0$	_	
4.	For cand	lidates who differentiate correctly but then so	silve $\frac{dy}{dx} = 0$ incorrectly, • ⁴ may be awarded as a	follow	
	through	mark. \bullet^5 and \bullet^6 are not available if a nature	e table has been used, but may be awarded where		
	candidat	tes have used the 2 nd derivative.			
5.	For cand	lidates who differentiate incorrectly \bullet^3 and \bullet^4	may be awarded as follow through marks. \bullet^5 an	d ● ⁶	
5.	oro not o	wailable if a nature table has been used, but r	nay be awarded where candidates have used the 2	nd	
5.	derivativ	/e.			
	derivativ	we. The accept min at $x = 0$ and max at $x = 2$.			
5. 6. 7.	derivativ At ● ⁶ sta	ge accept min at $x = 0$ and max at $x = 2$.	rectly but correctly process only one of these to		



Commonly Observed Responses:

Blank Page

Question		Generic Scheme	Illustrative Scheme	Max Mark	
22	For t	the polynomial $6x^3 + 7x^2 + ax + b$, • $x+1$ is a factor • 72 is the remainder when it is di	vided by $x-2$.		
	a]	Determine the values of <i>a</i> and <i>b</i> .			
•1 •2 •3 •4	ss pd pd	know to use $x = -1$ and obtain an equation know to use $x = 2$ and obtain an equation process equations to find one value find the other value	• ¹ $6(-1)^3 + 7(-1)^2 + a(-1) + b = 0$ • ² $6(2)^3 + 7(2)^2 + a(2) + b = 72$ • ³ $a = -1$ or $b = -2$ • ⁴ $b = -2$ or $a = -1$ Alternative Method for • ¹ and • ² • ¹ $-1 \begin{bmatrix} 6 & 7 & a & b \\ -6 & -1 & -a + 1 \\ \hline 6 & 1 & a - 1 & b - a + 1 = 0 \end{bmatrix}$ • ² 2 $\begin{bmatrix} 6 & 7 & a & b \\ 12 & 38 & 2a + 76 \\ \hline 6 & 19 & a + 38 & 2a + b + 76 = 0 \end{bmatrix}$	- 72 4	
s	uch th	prrect value at \bullet^3 should be followed through f at no solution exists, then \bullet^3 and \bullet^4 are not av by Observed Responses:	for the possible award of \bullet^4 . However, if the eq ailable.	uations are	
	didat				
	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
•2	<pre>✓ rej −2</pre>	Decated error			
Solv	ring to	$a = -35, b = 22 \bullet^3 \checkmark \bullet^4 \checkmark$			
Lead	ung to	b, in part (b), $\Rightarrow 6x^3 + 7x^2 - 35x + 22 = (x-1)(6x^2)^{-5}$	$x^{-} + 13x - 22$		
Ver	sion 4	t Page 1.	3		

Question		Generic Scheme	Generic Scheme Illustrative Scheme				
22 • ⁵ • ⁶	• ⁵ ss substitute for <i>a</i> and <i>b</i> and know to divide by $x+1$ • ⁵ $(6x^3+7x^2-x-2) \div (x+1)$ Stated or implied by • ⁶						
• Not 2. 3. 4.	For cand Candida Where the	tes who use incorrect values obtained i	correct quotient from part (a), \bullet^5 , \bullet^6 and \bullet^7 are av				
5. 6.	Candida available	benalise the inclusion of $= 0$ or for so tes who use values, ex nihilo, for α and e if $(x+1)$ is a factor of the resulting ex Observed Responses:	d \mathbf{b} can gain $\mathbf{\bullet}^5$, if division is correct, but $\mathbf{\bullet}^6$ and $\mathbf{\bullet}^7$	are only			
22a 22b (6 <i>x</i>	$x^{3} + 7x^{2} - 4$	tion y = -5 ex nihilo $(x-5) \div (x+1)$ 7 -4 -5 -6 -1 5 1 -5 0 (x-5) e^{6}	Candidate C 22a no solution 22b $a=2, b=3$ ex nihilo $(6x^3+7x^2+2x+3) \div (x+1)$ • ⁵ $-1 \begin{bmatrix} 6 & 7 & 2 & 3 \\ \hline -6 & -1 & -1 \\ \hline 0 & 1 & 1 & 2 \end{bmatrix}$ $\Rightarrow (x+1)$ is not a factor • ⁶ and • ⁷ are not available	•			
22a 22b (6x (x+1 b ² -	$x^{3} + 7x^{2} + 4$ -1 6 $-1)(6x^{2} + x)$ -4cw = 1 - 1	tion =3 ex nihilo $x+3) \div (x+1)$ •5 × 7 4 3 -6 -1 -31 3 0 x+3) • ⁶ ×					

Que	estio	n Generic Scheme		Max Mark				
23	a	Find P and Q, the points of intersection $x^2 + y^2 + 2x - 4y - 15$	ction of the line $y = 3x - 5$ and the circle C ₁ with					
•1	SS	substitute $3x - 5$	• ¹ $x^{2} + (3x - 5)^{2} + 2x - 4(3x - 5) - 15 = 0$					
•2	pd	express in standard quadratic form	• ² $10x^2 - 40x + 30 = 0$					
• ³ • ⁴	pd pd	find <i>x</i> -coordinates find <i>y</i> -coordinates	$ \begin{array}{c cccc} \bullet^3 & x=1 & x=3 \\ \bullet^4 & y=-2 & y=4 \\ \end{array} $					
Not	es:		•3 •4	4				
1. $= 0$ must appear at $=^1$ or $=^2$ for mark $=^2$ to be awarded.								
2.	If y	$=\frac{1}{3}(y+5)$ is substituted at \bullet^1 then 1	$0y^2 - 20y - 80 = 0$ is obtained at \bullet^2 .					
3.			= 3 do not appear as a result of \bullet^1 and \bullet^2 , but are substitution					
			values, if the candidate then checks that both points lie					
			on, the candidate makes a statement to the effect that a l	ine can				
	onl	y cut a circle in, at most, 2 points, then	$\frac{4}{4}$ marks are awarded. Otherwise, $\frac{9}{4}$ marks.					
Cor	nmo	nly Observed Responses:						
		ite A						
		$(-5)^2 + 2x - 4(3x - 5) - 15 = 0$ \bullet^1						
		$0x + 40 = 0 \qquad \bullet^2 X$	/					
<i>x</i> =	2 an	$dy = 1$ \bullet^3 \checkmark \bullet^4 \land	•					
23	b	T is the centre of C_1 .						
	~	Show that PT and QT are perpendi	cular					
•5	SS	state centre •5	(-1,2)					
•6	pd	calculate gradients	$m = -2, m = \frac{1}{2}$					
•7	ic	communicate result	-					
	ic	communicate result	$m_1 \times m_2 = -2 \times \frac{1}{2} = -1$					
			\Rightarrow PT is perpendicular to QT					
			[or other appropriate statement]					
			Alternative Method					
•5	SS	state centre	(-1,2)					
•6	pd	calculate vectors	eg $\begin{pmatrix} -2\\4 \end{pmatrix}$ and $\begin{pmatrix} -4\\-2 \end{pmatrix}$					
•7	ic	communicate result •7	$\binom{-2}{4} \cdot \binom{-4}{-2} = -2 \times -4 + 4 \times -2 = 0$					
			\Rightarrow PT is perpendicular to QT	_				
			[or other appropriate statement]	3				

Notes:

- 4. Other valid strategies:
 - a Converse of Pythagoras' Theorem:

•⁶ process lengths,
$$PT = QT = \sqrt{20}$$
, $PQ = \sqrt{40}$

- •⁷ apply converse and communicate result clearly.
- b Cosine Rule:

• ⁶ process lengths,	• ⁷ apply cosine rule to \bullet^{7}	b obtain angle 90° and communicate result clearly.			
Commonly Observed Respons	es:				
Candidate B		Candidate C			
T(-1,2) ● ⁵ ✓		T(-1,2)	•5 🗸		

$$m = \frac{1}{2}, m = -2 \qquad \bullet^6$$

 $m_1 \times m_2 = -1$

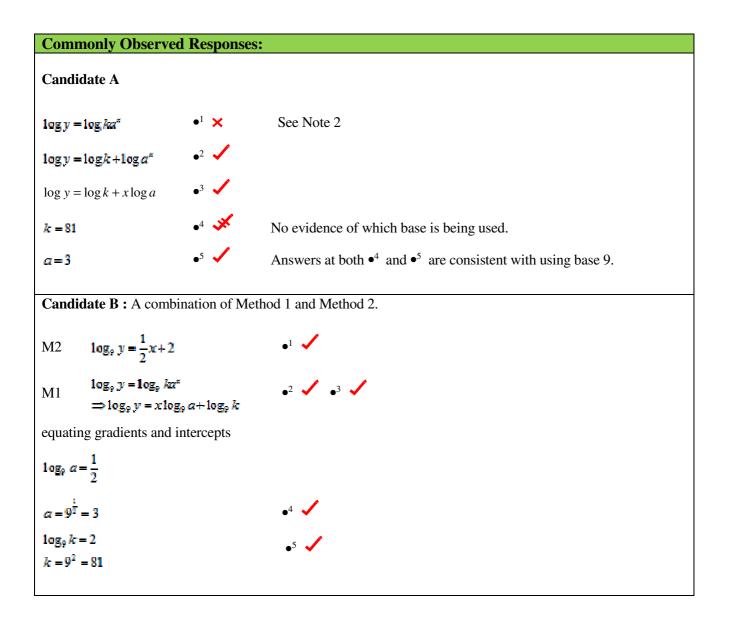
 $m_1 \times m_2 = -1$ •⁷ \checkmark

Required condition is linked to gradients found.

 $m_1 = \frac{1}{2}, m_2 = -2$ •⁶ \checkmark

No link between required condition and gradients R found. R 23 c A second circle C₂ passes through P O and T

23	C	Find the equation of C_2 .	ign F	, Q and T.	
•8	SS	knows to find and states centre	•8	centre (2, 1)	
•9	pd	calculate radius	•9	radius = $\sqrt{10}$	
• ¹⁰	ic	state equation of circle	● ¹⁰	$(x-2)^2 + (y-1)^2 = 10$	
					3
				Alternative Method	
•8	SS	substitute points into general		$x^2 + y^2 + 2gx + 2fy + c = 0$	
		equation of circle	•8	25 + 6g + 8f + c = 0	
			••	5 + 2g - 4f + c = 0	
				5 - 2g + 4f + c = 0	
•9	pd	find f or g or c	•9	f = -1, or $g = -2$, or $c = -5$	
● ¹⁰	ic	state values of f , g and c	● ¹⁰	f = -1, g = -2, c = -5	
Not	es:				


5. $(\sqrt{10})^2$ must be simplified to gain \bullet^{10}

6. For candidates who find P and Q correctly in part (a), award \bullet^8 if centre (2,1) appears without working.

7. For the mid-point of PQ being (2,1), •⁸ is available unless subsequent working indicates that this is not the intended centre.

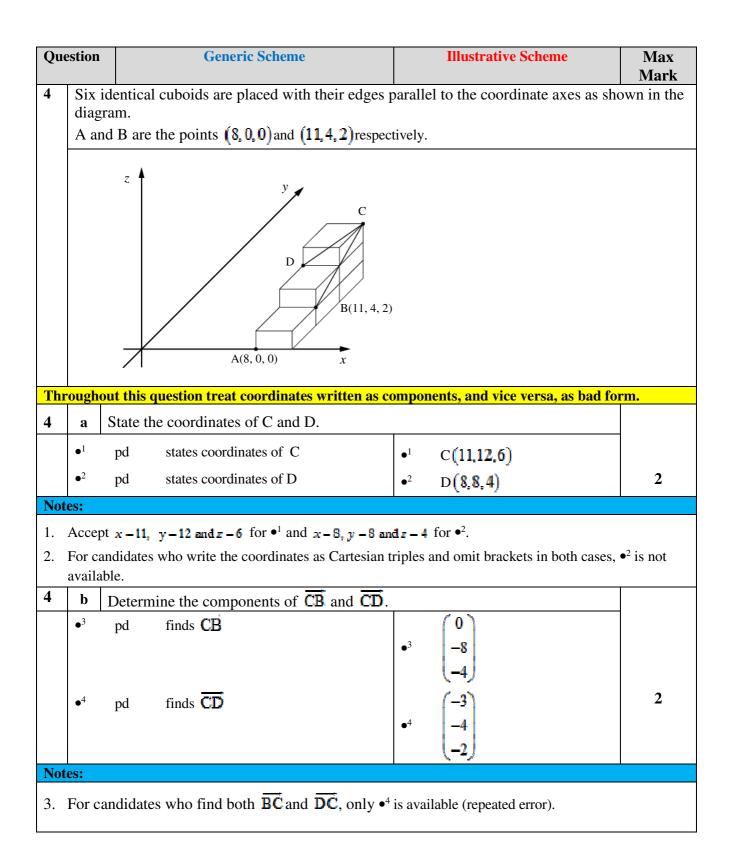
- •⁹ is only available as a result of PQ being a diameter, or, using a valid strategy to find the centre eg midpoint of PQ or point of intersection of the perpendicular bisectors of PT and TQ. •¹⁰ is still available.
- 9. Where an incorrect centre or an incorrect radius appear ex nihilo \bullet^{10} is not available.

Question	Generic Scheme		Illustrative Scheme	Max Mark
24 Two va	riables, x and y , are related by the equ	uation j	$v = k\alpha^{x}$	
line pa	$\log_{9} y$ is plotted against x , a straight assing through the points $(0, 2)$ and is obtained, as shown in the diagram.		log, y	
• •	the values of k and a .		(0,2) 0	→ x
● ¹ ss ta	ke \log_{0} of both sides of the equation	•1	Method 1 $\log_9 y = \log_9 ka^x$	
55 u	apply laws of logarithms	• ²	$\log_9 y = \log_9 k + \log_9 a^{\chi}$	
_	pply laws of logarithms	•3	$\log_9 y = \log_9 k + \log_9 a$ $\log_9 y = \log_9 k + x \log_9 a$	
● ⁴ pd fi		•4	$\log_9 k = 2, k = 81$ or $k = 9^2 = 81$	
● ⁵ pd fi		•5	$\log_9 \alpha = \frac{1}{2}, \alpha = 3$ or $\alpha = 9^{\frac{1}{2}} = 3$	5
● ¹ ss k	now to use equation of the line	•1	Method 2 $\log_{9} y = \frac{1}{2}x + 2$	
• ² pd w	vrite in exponential form	• ²	$y = 9^{\frac{1}{2}x+2}$	
• ³ pd a	pply laws of indices	•3	1 0]*02	
● ⁴ pd fi	ind k	•4	$y = 9^2 y^2$ k = 81	
● ⁵ pd fi		•5	<i>a</i> = 3	
Notes: 1. Car	ndidates who start with $\bullet^3 \log_9 y = \log_9 y$	k+x	$\mathbf{o}\mathbf{r}_{\mathbf{a}}$ and \mathbf{o}^2	
	Method 1, base 9 must appear by \bullet^4 stag			
	k = 81 and $a = 3$ with spurious or no w			
	r	-6,		

Paper 2

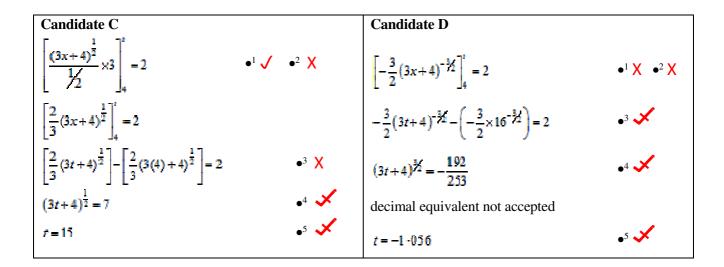
Que	Question		Generic Scheme		Illustrative Scheme	Max Mark				
1	A (3	,0), B(5,2	2) and the origin are the verti	ces of a	triangle as shown in the diagram.	WIIIIK				
	$\mathcal{Y} \wedge \mathcal{B}(5,2)$									
				\rightarrow_{x}						
		0	A (3.0)	~						
	a	Obtain th	ne equation of the perpendicular	bisector	of AB.	-				
	•1									
	•	SS	find gradient of AB	•1	$m_{AB} = 1$					
	•2	pd	find perpendicular gradient	•2	$m_{perp} = -1$ stated or implied by \bullet^4					
	•3	pd	find midpoint of AB	•3	(4.1) stated or implied by \bullet^4					
	•4	pd	obtain equation	•4	y-1 = -1(x-4)	4				
Not	es:									
					endicular gradient and a midpoint.					
			nust appear in simplified form red Responses:	i at ● ⁺ sta	ge for • to be awarded.					
Can	didat	e A								
m _{AB}	= -1	• ¹								
	, = 1	•2								
(4,1)		•3								
y-1	$l = 1(x \cdot$	$-4) \Rightarrow y$	= r - 3 • * 🔨							
	-	o part (b)								
-	x = -3 2x = 6	• ⁵	×							
(3,0)	•6	×							
• ⁷ ai	nd ● ⁸ a	re not ava	ilable as $A - T - (3, 0)$							

Question Generic Sch			Generic Sche	me		Illustrat	ive Scheme	Max Mark	
1		The	e median fr	om A has equation	y + 2x = 6.				
	b	Fin	d T, the po	int of intersection	of this median and	d the per	pendicula	r bisector of AB	B.
		•5	ss know to solve simultaneously			•5	y+2x= y+x=		
		•6	pd solve correctly for x and y			•6	x=1, y	=4	2
Co	omm	only	Observe	d Responses:					
Par Par	Candidate BPart (a) $y-1=-1(x-4)$ $\bullet^4 \checkmark$ $y-x+3$ errorPart (b) $y+2x=6$ and $y+x=3$ $\bullet^5 \checkmark$ $r=3, y=0$ $\bullet^6 \checkmark$ correct strategy used, pd mark not available								
	c	•7 •8	ss pd	angle that AT m know and use m calculate angle		•7 •8	$\tan \theta = -$ 116.6°		2
Co	mmo	only (Observed 1	Responses:	I				
Ca	ndid	late	С		Candidate D				
ba:	r = - se ang	- ļe = 2	$6 \cdot 6^{\circ}$ + 26 \cdot 6 = 1	• ⁷ X 16·6 ⁰ • ⁸ X	$m_{a\tau} = 2$ angle = tan ⁻¹ (2) =	= 63 · 4 ⁰	•7 X •8 ×		
Ca	ndid	late	E: part (a)		Part (b)				
$m_{\scriptscriptstyle A}$	$A_{\rm B} = \frac{2}{2}$	$\frac{2-0}{5-3}$	$=\frac{2}{8}=\frac{1}{4}$	• ¹ X	y+4x-5=0 $y+2x+6=0$	• ⁵ X	\Rightarrow	y + 2x = -6 $y + 4x = -5$	• ⁶ X
m _p	erp =	-4		•2	$\Rightarrow 2x = 1, x =$	$\frac{1}{2}, y = -$	-7		
	-		AB(4, 1) (4, 1)	• ³ √ •4 ×	• ⁵ is a strategy m given equation not awarded as th	with the e	equation f	rom part (a) sim	ultaneously. \bullet^5 is
<i>y</i> +	+4x-	-5			The equation obt part (b). The nex		0	-	ged incorrectly in rded.

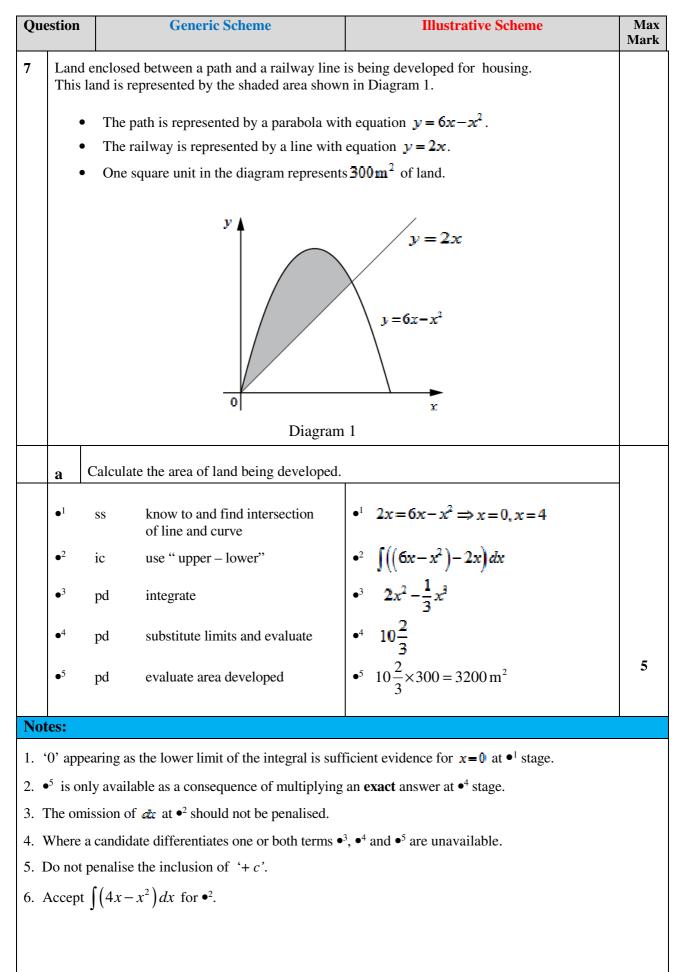

Que	Question		Generic Scheme		Illustrative Scheme	Max Mark								
2	A cur	ve has	equation $y = x^4 - 2x^3 + 5$.	·										
	Find the equation of the tangent to this curve at the point where $x = 2$.													
	● ¹	SS	know to and differentiate	•1	$4x^3 - 6x^2$									
	● ²	ic	find gradient	•2	8									
	•3	pd	find y-coordinate	•3	5									
	• ⁴	ic	state equation of tangent	•4	y-5=8(x-2)	4								
	• ⁴ is or		ilable if an attempt has been made to by substitution into the original equa		gradient from differentiation and cal	culating the								
Con	nmonl	y Obse	erved Responses:											
Car	ndidat	e A												
•1	•2	✓ •	3 🗸			$\bullet^1 \checkmark \bullet^2 \checkmark \bullet^3 \checkmark$								
using $y = mx + c$														
using	g y = n	x+ c												
	-	ex + c i, m = 8												
x = 1	-	, <i>m</i> = 8												
x=3 ⇒5	2, y = 5	, m = 8 + c	•4 🗸											

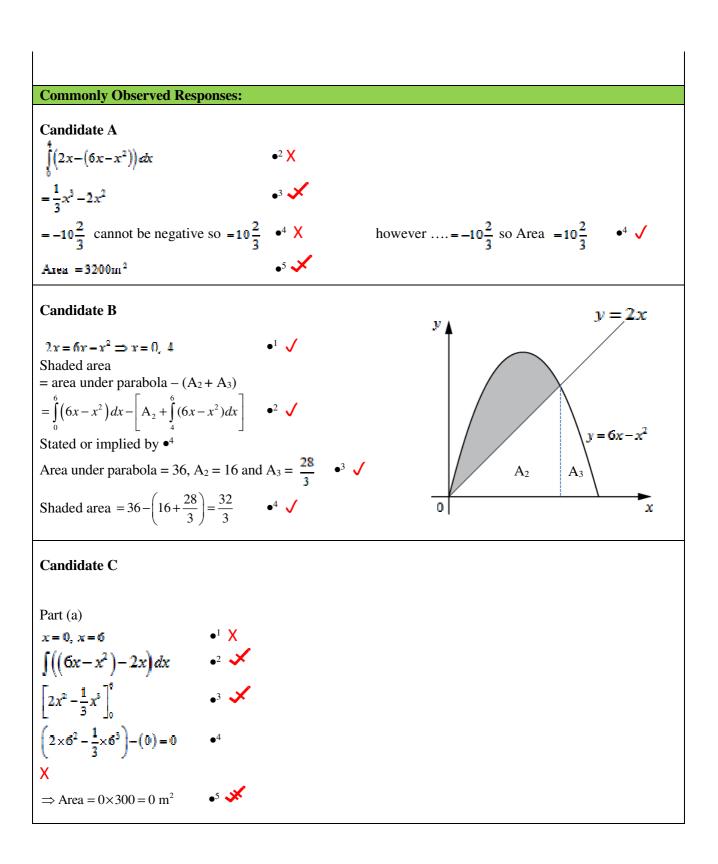
Blank Page

Que	estio	n Ge	neric Scheme	Illustrative Schem	e	Max Mark
3			are defined on suitable	domains by $f(x) = x(x-1) +$	q	
	and	d g(x) = x + 3.				
	a	Find an expression	on for $f(g(x))$.			
		• ¹ ic in	terpret notation	• $f(x+3)$ stated or implied	d by ●²	
		• ² pd a d	correct expression	• ² = $(x+3)(x+2)+q$		
				OR		2
				$= (x+3)^2 - (x+3) + q$ or equivalent		
Not	tes:			or equivalent		
1.	Spec	cial Case: \bullet^1 is for s	ubstituting $(x+3)$ for x th	trus, treat $x + 3(x + 3 - 1) + q$ as bad	form.	
		only Observed Resp				
Ca	ndid	late A		Candidate B		
f(g	((x))	= x + 3(x + 3 - 1) + q	•1 🗸	f(g(x)) = x + 3(x + 3 - 1) + q	•1 🗸	
		$= x^2 + 5x + 6 + q$		= 4x + 6 + q	•² X	
Ca	ndid	late C		Candidate D		
f (g	<u>;(x)</u>)	= x+3(x+3-1)+q	•1 🗸	f(g(x)) = (x+3)(x+3-1) + q	• ¹ 🗸 • ²	v
		$=(x+3)^2-x+3+q$		$=(x+3)^2-x+3+q$		
		$x^2 + 5x + 6 + q = 0$	• ² ✓ • ³ ✓	$x^2 + 5x + 12 + q = 0$	• ³ X	
	ndid rt (a)	late E: using g(f)	(x))	part (b)		
s(f	((x))	=g(x(x-1)+q)	• ¹ X	$x^2 - x + q + 3 = 0$	•3 💉 (6	eased)
		= x(x-1) + q + 3	•2 💉	$b^{2} - 4ac = (-1)^{2} - 4 \times 1 \times (q+3)$	•4	
Lea	ading	g to		1 - 4q - 12 = 0	•5	
	c			$q = -\frac{11}{4}$	•6 🖌	


Questio					Illustrative Scheme		
3	b	Henc	e, finc	the value of q such that the e	quation		
				Method 1		Method 1	
		•3	pd	write in standard quadratic form	•3	$x^2 + 5x + 6 + q = 0$	
		● ⁴	ic	use discriminant	•4	$b^2 - 4ac = 5^2 - 4 \times 1 \times (6 + q)$	
		•5	pd	simplify and equate to zero	•5	$\Rightarrow 25 - 24 - 4q = 0$	
		• ⁶	pd	find value of <i>q</i>	● ⁶	$q = \frac{1}{4}$	4
				Method 2		Method 2	
		•3	pd	write in standard quadratic form	•3	$x^2 + 5x + 6 + q = 0$	
		• ⁴	ic	complete the square	•4	$\left(x + \frac{5}{2}\right)^2 - \frac{25}{4} + 6 + q = 0$	
		•5	pd	equate to zero	•5	$-\frac{25}{4}+6+q=0$	
		● ⁶	pd	find value of q	•6	$q = \frac{1}{4}$	
				Method 3		Method 3	
		•3	pd	write in standard quadratic form	•3	$f(g(x)) = x^2 + 5x + 6 + q = 0$	
		• ⁴	ic	geometric interpretation	• ⁴	equal roots so touches <i>x</i> -axis at SP	
		● ⁵	pd	differentiates to obtain x	• ⁵	$\Rightarrow \frac{dy}{dx} = 2x + 5 = 0$	
		● 6	pd	find value of <i>q</i>	•6	$x = -\frac{1}{2}$ $\frac{25}{4} - \frac{25}{2} + 6 + q = 0$ $x = -\frac{1}{2}$	
						$\frac{q}{4} = \frac{1}{4}$	

5. If the expression obtained at \bullet^3 is not a quadratic then \bullet^3 , \bullet^4 , \bullet^5 and \bullet^6 are not available.


Question			Generic Scheme		Illustrative Scheme	Max Mark	
4	c	Find	the size of the angle BCD.				
	•5	SS	know to use scalar product applied the correct angle	to • ⁵	$\cos B\hat{C}D = \frac{\overline{CB} \cdot \overline{CD}}{ \overline{CB} \overline{CD} }$		
					stated or implied by \bullet^9		
	•6	pd	find scalar product	• ⁶	40		
	•7	pd	find $ \overrightarrow{CB} $	•7	$\sqrt{80}$	5	
	•8	pd	find $ \overrightarrow{CD} $	•8	$\sqrt{29}$		
	• ⁹	pd	find angle	•9	33-9°		
Not	tes:						
4.	• ⁵ is no	ot availa	able for candidates who choose to eval	uate an inc	correct angle.		
5.	• ⁹ acce	pt 33-8	to 34 degrees or 0.39 to 0.6 radians	S.			
6.	If cand	idates o	do not attempt \bullet^9 , then \bullet^5 is only availa	ble if the f	formula quoted relates to the labe	lling in the	
	questic						
			lable as a result of using a valid strateg				
8.	● ⁵ is no	ot availa	ble for candidates who write $\cos\theta = -$	<u>40</u>	Some reference to the labelling of	of the	
	angle.	n mus t	be made within their solution to part (c), to indi	cate they are attempting to find th	e correct	
Cor	-	v Obse	rved Responses:				
	-		osine Rule	Candida	to D		
COS	BCD =	2×C	$\frac{2D^2 - BD^2}{B \times CD} \qquad \bullet^5 \checkmark$	cosBCD		• ⁵ X	
СВ	= \{\overline{80}\),	CD =	$\frac{D^2 - BD^2}{B \times CD} \qquad \bullet^5 \checkmark$ $\frac{5}{29}, BD = \sqrt{29} \bullet^6 \checkmark \bullet^7 \checkmark \bullet^8 \checkmark$ $\bullet^9 \checkmark$			•6	
33.	9 ⁰ or 0 -	59 radis	•9 🗸		/	•••	
				BC = √8	$\overline{0}$, $\overline{\mathbf{CD}} = \sqrt{29}$ $\mathbf{\bullet}^7$	• * •	
				146 - 1° or	2-55 radians	•9 🖌	
Cai	ndidate	eC		Candida	te D		
co	sBÔD =	OB.C	<u>₩</u> •5 X	cosC BD	= BC.BD BC×BD	• ⁵ X	
	OD = 1			$\overline{BC}.\overline{BD} =$		•6 💉	
	= √141		$5 = 12 \qquad 6^7 5^7 6^8 5^7$		40 0 , BD = √29 •7 ✓ 0-59 radians	•8 💉	
	1^0 or 0 .	•		• •	0-59 radians	•9 💉	
Cai	ndidate	Ε		Candida			
co	sBÔC =	OB.O		cosBĈD		•5 🗸	
ŌB	. 00 =18	81	$= \sqrt{301} \qquad \bullet^7 \checkmark \bullet^8 \checkmark$	this is an	acceptable form for the scalar pro	oduct.	
OB	= √141	ī, <mark>00</mark>	4		I Free and second by		
28.	5^0 or 0 .	50 radia	ans •9 💉				
Var	sion 4		Page 26	-			


Que	Question		Generic Scheme			Illustrative Scheme	Max Mark	
5	Given	that	$\int_{4}^{t} (3x+4)^{-\frac{1}{2}} dx$, find	the value of <i>t</i>	•			
	•1	SS	start to integrate		•1	$\frac{1}{1/2}(\dots)^{1/2}$		
	•2	pd	complete integration	l	•2	$\dots \times \frac{1}{3}$		
	•3	pd	process limits		• ³	$\frac{2}{3}(3t+4)^{\frac{1}{2}} - \frac{2}{3}(3(4)+4)^{\frac{1}{2}}$		
	•4	pd	start to solve equation	on	• ⁴	$(3t+4)^{\frac{1}{2}}=7$		
	• ⁵	pd	solve for <i>t</i>		• ⁵	t = 15	5	
Not	es:							
 2. 3. 4. 5. 	 3. The integral obtained must contain a non integer power for •⁴ and •⁵ to be available. 4. Do not penalise the inclusion of '+¢'. 							
Can	didate .	A: Fo	rgetting the $\frac{1}{3}$		Cand	idate B		
Candidate A: Forgetting the $\frac{1}{3}$ $\begin{bmatrix} 2(3x+4)^{\frac{1}{2}} \end{bmatrix}_{4}^{1} = 2$ $\begin{pmatrix} 1 \\ (3x+4)^{\frac{1}{2}} \end{bmatrix}_{4}^{1} = 2$ $\begin{pmatrix} 3 \\ (3x+4)^{\frac{1}{$								

6	•1 •2 •3	the eq ss ss ss	uation $\sin x - 2\cos 2x = 1$ for $0 \le x < 3$ use correct double angle formula arrange in standard quadratic form start to solve	• $\sin x - 2(1 - 2\sin^2 x)$ stated or implied by • ² • $4\sin^2 x + \sin x - 3 = 0$				
	•2	SS	arrange in standard quadratic form	stated or implied by \bullet^2 • ² $4\sin^2 x + \sin x - 3 = 0$				
	•3	SS	start to solve					
				$\bullet^3 (4\sin x - 3)(\sin x + 1) = 0$				
		OR						
	$\frac{-1\pm\sqrt{(1)^2-4\times4\times(-3)}}{2\times4}$							
	•4	ic	reduce to equations in $\sin x$ only	• $\sin x = \frac{3}{4}$ and $\sin x = -1$	_			
	• ⁵	pd	process to find solutions in given domain	• ⁵ 0.848, 2.29 and $\frac{3\pi}{2}$	5			
	OR							
				• ⁴ sin $x = \frac{3}{4}$ and $x = 0.848$, 2.29 • ⁵ sin $x = -1$, and $x = \frac{3\pi}{2}$				
				• $\sin x = -1$, and $x = \frac{3\pi}{2}$				
Not	es:							
1.	• ¹ is no	ot avail	able for simply stating $\cos 2A = 1 - 2 \sin^2 2$	with no further working.				
2.	In the e	event o	f $\cos^2 x - \sin^2 x$ or $2\cos^2 x - 1$ being subst	ituted for $\cos 2x$, \bullet^1 cannot be awarded u	ntil the			
	equation	on redu	ces to a quadratic in $\sin x$.					
3.	Substit	uting 1	$1-2\sin^2 A$ or $1-2\sin^2 \alpha$ for $\cos 2\alpha$ at $\bullet^1 s$	stage should be treated as bad form provide	led the			
	equation	on is w	ritten in terms of x at stage \bullet^2 . Otherwise,	• ¹ is not available.				
4.	' = 0 '1	nust ap	opear by \bullet^3 stage for \bullet^2 to be awarded. He	owever, for candidates using the quadration	c formula			
	to solv	e the e	quation, $= 0$ must appear at e^2 stage for	\bullet^2 to be awarded.				
5.	Candic	lates m	ay express the equation obtained at \bullet^2 in	the form $4s^2 + s - 3 = 0$ or $4x^2 + x - 3 = 0$.	In these			
	cases, a	award	• ³ for $(4s-3)(s+1)=0$ or $(4x-3)(x+1)$	= 0. However, • ⁴ is only available if sin a	appears			
	explici	tlv at tl	his stage.					
	•	•	only available as a consequence of solving	a quadratic equation.				
			are not available for any attempt to solve		с.			
			able to candidates who work in degrees a	-				
			CASION, accept any answers which rou					
			$x^2 x - 3 = 0$ does not gain \bullet^2 , unless \bullet^3 is a					

Commonly Observed Responses			
Candidate A		Candidate B	
• ¹ \checkmark • ² \checkmark (4s-3)(s+1)=0 $s = \frac{3}{4}, s = -1$	• ⁴ X	$\bullet^{1} \checkmark$ $4 \sin^{2} x + \sin x - 3 = 0$ $5 \sin x - 3 = 0$ $\sin x = \frac{3}{5}$	• ² ✓ • ³ X • ⁴ X
$x = 0.848, 2.29 \text{ and } \frac{3\pi}{2}$ Candidate C	•5 🗸	x = 0.644, 2.50 Candidate D	•5 🐝
• ¹ \checkmark $\sin x - 2(1 - 2\sin^2 x) = 1$ $\sin x - 2 + 4\sin^2 x = 1$ $4\sin^2 x + \sin x = 3$	•2 🐝	• ¹ \checkmark $\sin x - 2(1 - 2\sin^2 x) = 1$ $4\sin^2 x + \sin x - 3 = 0$ $4\sin^2 x + \sin x - 3$	•2 🗸
$\sin x(4\sin x + 1) = 3$ $\sin x = 3, 4\sin x + 1 = 3$ no solution, $\sin x = \frac{1}{2}$	•3 💉 •4 X	$\sin x(4\sin x + 1) = 3$ $\sin x = 3, 4\sin x + 1 = 3$ no solution, $\sin x = \frac{1}{2}$	•3 🐝 •4 🗙
$x = \frac{\pi}{6}, \frac{5\pi}{6}$ Candidate E: Reading cos2x as	•5 🐝 cos ² x	$x = \frac{\pi}{6}, \frac{5\pi}{6}$	•5 💉
$\sin x - 2\cos^2 x = 1$ $\sin x - 2(1 - \sin^2 x) = 1$	•1 X		
$2\sin^{2} x + \sin x - 3 = 0$ (2sin x + 3)(sin x - 1) = 0 2sin x + 3 = 0, sin x - 1 = 0			
$2 \sin x + 3 = 0, \sin x - 1 = 0$ no solution, $x = \frac{\pi}{2}$	5 🐝		

Que	estion		Generic Scheme		Illustrative Scheme	Max Mark
7b	A road	l is bui	It parallel to the railway line and is	a tange	nt to the path as shown in Diagram 2. y = 2x $y = 6x - x^2$	Mark
			that the land, represented by the sha area of the car park.	ded are	x a in Diagram 2, will become a car park.	
	•6 •7	ss pd pd	set derivative to 2 find point of contact find equation of road	•6 •7 •8	6-2x=2 x = 2, y = 8 y = 2x + 4	
	• ⁹	ss ic	find correct integral calculate area	• ⁹	$\left[\left(x^{2} + 4x \right) - \left(3x^{2} - \frac{1}{3}x^{3} \right) \right]_{0}^{2}$ 800m ²	5
	For can Candid equation y = 2x + • ¹⁰ is on	ates wl n of th <mark>4</mark> must ly avai	is who omit ' \mathbf{m}^2 ' at both $\mathbf{\bullet}^5$ and $\mathbf{\bullet}^{10}$ no arrive at an incorrect equation at \mathbf{e} e form $\mathbf{y} = 2\mathbf{x} + \mathbf{c}$ with $\mathbf{c} > 0$, for $\mathbf{\bullet}^9$ appear explicitly or as part of the in lable as a result of a valid strategy a (quadratic) and lower limit = 0 and	• ⁸ , or pr and • ¹⁰ tegrand at the • ¹⁰	roduce an equation ex nihilo, must use an ⁹ to be available. for • ⁸ to be awarded. ⁹ stage,	
Can	didate	D: Alt	ved Responses: ernative Method of the form $y = 2x + c$, $y = 2x + c$ and	dv = 60	$x - x^2$ intersect where $x^2 - 4x + c = 0$ • ⁶	✓ ✓
tang	gency 🚍	> 1 poi) ^a – 4 <i>a</i> c 16 – 4c c = 4	nt of intersection = 0 = 0	4y - 04	• ⁷ √ • ⁸ √	•

Qu	estion		Generic Scheme		Illustrative Scheme	Max Mark
8	x	•	quation px - 4py + 3p + 2 = 0 le, determine the range of value	es of p	r.	
	•	¹ pd	correct values	•1	g = -p, f = -2p, c = 3p + 2	
	•	² SS	substitute and rearrange		$5p^2 - 3p - 2$	
	•	³ ic	knowing condition	•3	$g^2 + f^2 - c > 0$	
	•	⁴ pd	factorise and solve	•4	$(5p+2)(p-1)=0 \Rightarrow p=-\frac{2}{5}, p=1$	
	•	⁵ ic	correct range	• ⁵	$p < -\frac{2}{5}, p > 1$	5
 2. 3. 4. 5. 6. 7. 	Do n Do n Can For Evic	not accept not accept didates wh a candidat dence for	is case, award • ¹ only if subsection $(-p)^2 + (2p)^2 - (3p+2)$ or $g^2 + f^2 - c \ge 0$ for • ³ . o state the coordinates of the contrast	entre, ($+(-2p)^2 - (3p+2)$ for \bullet^1 . $p,2p$ and state the radius, $r = \sqrt{\dots - (3p+2)}$ gas in to get $p < -\sqrt{\frac{2}{5}}$, $p > \sqrt{\frac{2}{5}}$, award \bullet^2 , \bullet^3 and	in ● ¹ . ● ⁵ .
	<mark>nmonl</mark> ndidate	-	d Responses:			
		r = -4p, c	=3 p +2 ● ¹ X			
204	$p^2 - 3p$	- 2	•2			
8 ^{2 -}	+ f ² - c	> 0	•3			
(4 <i>p</i>	+1)(5 ₁	∞-2)=0 =	$\Rightarrow p = -\frac{1}{4}, p = \frac{2}{5} \bullet^4$			
<i>p</i> <	$-\frac{1}{4}$, p	$>\frac{2}{5}$	•5			

Que	estion	Gener	ic Scheme	Illustra	tive Scheme	Max Mark
9	An ob	ject is travelling in a	the rate of change of ve a straight line. The velo f the motion, is given by	city, v m/s, of th	·	
		nd a formula for <i>a(t)</i> ter the start of the m	, the acceleration of thi otion.	s object, <u>t</u> second	ds	
	● ¹	ss know to diffe	erentiate	• $a = v'(t)$		
	•2	pd differentiates	trig. function	• ² -8sin(2t	$-\frac{\pi}{2})$	
	•3	pd applies chain	rule	• ³ ×2 $a(t) = -$	and complete $16\sin(2t - \frac{\pi}{2})$	3
Con	nmonly	Observed Responses	:			
Car Part		e A: Alternative M	ethod Part (b)		Part (c)	
v'(t)	= 8 cos(= = 8 cos2 =×		$v'(10) = 16 \cos 20 = 6.53$ > 0, \Rightarrow velocity is inc	• ⁴ reasing • ⁵	$s(t) = \int v(t)dt$ $s(t) = -4\cos 2t + c$ $4 = -4 + c \Longrightarrow c = 8$ $\Rightarrow s(t) = -4\cos 2t + 8$ or $\Rightarrow s(t) = 8 - 4\cos 2t$	• ⁶ • ⁷
Car	ndidate	B: Candidates who	misinterpret the proces	s for rate of chan	ge.	
	$=\int 8\cos(\theta)$	$\left(2t - \frac{\pi}{2}\right) dt$ $2t - \frac{\pi}{2} + c$	Part (b) If $t = 10$, $a = 4\sin\left(20 - \frac{\pi}{2}\right)$ $= -1 \cdot 63 + c$	-++c	Part (c) s = v'(t) $s(t) = -16 \sin\left(2t - \frac{\pi}{2}\right)$	
		cess award $\frac{0}{3}$	Cannot evaluate award	%	Award $\frac{2}{3}$	
Part $a = 1$	v'(t) or e	C equivalent \bullet^1 $-\frac{\pi}{2}$ $\bullet^2 \times \bullet^2$	³ X a(1 <0,	t (b) $0) = 4\sin\left(20 - \frac{\pi}{2}\right) =$ So decreasing	-1.63 • ⁴ • ⁵	
			- On	ly as a consequence	or • in part (a)	

9	Question		on Generic Scheme			Illustrative Scheme		
	b	Determine whether the velocity of the object when $t = 10$.				is increasing or decreasing		
		•4	SS	know to and evaluate $a(10)$	•4	a(10) = 6.53	-	
		•5	ic	interpret result	•5	a(10) > 0 therefore (velocity) is increasing	2	
3. •	2 and	• ³ ma			•	r 9(b). However, • ¹ requires a clear link bet Illustrative Scheme	Max	
9	Velo	ocity	is defii	ned as the rate of change of o	displac	ement.	Mark	
	c			a formula for $s(t)$, the displayed hen $t = 0$.	acemei	nt of the object, given that		
		•6	ic	know to integrate	•6	$s(t) = \int v(t) dt$		
		•7	pd	integrate correctly	•7	$s(t) = 4\sin\left(2t - \frac{\pi}{2}\right) + c$		
		• ⁸	ic	determine constant and complete	•8	$c = 8 \operatorname{so} s(t) = 4 \sin\left(2t - \frac{\pi}{2}\right) + 8$	3	
Not	es:	1			1			
4.	\bullet^7 and	1 ● ⁸ ar	e not av	ailable to candidates who work	in deg	rees. However, accept $\int 8\cos(2t-90)dt$	for \bullet^6 .	

[END OF MARKING INSTRUCTIONS]