X100/12/03

NATIONAL TUESDAY, 6 MAY
QUALIFICATIONS 2014
MATHEMATICS HIGHER
Paper 2

Read carefully

1 Calculators may be used in this paper.
2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}
or

$$
\text { a.b }=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+c$
$\cos a x$	$\frac{1}{a} \sin a x+c$

ALL questions should be attempted.

1. $\mathrm{A}(3,0), \mathrm{B}(5,2)$ and the origin are the vertices of a triangle as shown in the diagram.

(a) Obtain the equation of the perpendicular bisector of AB .
(b) The median from A has equation $y+2 x=6$.

Find T, the point of intersection of this median and the perpendicular bisector of AB .
(c) Calculate the angle that AT makes with the positive direction of the x-axis.
2. A curve has equation $y=x^{4}-2 x^{3}+5$.

Find the equation of the tangent to this curve at the point where $x=2$.
3. Functions f and g are defined on suitable domains by

$$
f(x)=x(x-1)+q \text { and } g(x)=x+3 .
$$

(a) Find an expression for $f(g(x))$.
(b) Hence, find the value of q such that the equation $f(g(x))=0$ has equal roots.
4. Six identical cuboids are placed with their edges parallel to the coordinate axes as shown in the diagram.

A and B are the points $(8,0,0)$ and $(11,4,2)$ respectively.
(a) State the coordinates of C and D.
(b) Determine the components of $\overrightarrow{C B}$ and $\overrightarrow{C D}$.
(c) Find the size of the angle BCD.
5. Given that $\int_{4}^{t}(3 x+4)^{-\frac{1}{2}} d x=2$, find the value of t.
6. Solve the equation

$$
\sin x-2 \cos 2 x=1 \quad \text { for } 0 \leq x<2 \pi
$$

7. Land enclosed between a path and a railway line is being developed for housing.

This land is represented by the shaded area shown in Diagram 1.

- The path is represented by a parabola with equation $y=6 x-x^{2}$.
- The railway is represented by a line with equation $y=2 x$.
- One square unit in the diagram represents $300 \mathrm{~m}^{2}$ of land.

Diagram 1
(a) Calculate the area of land being developed.
(b) A road is built parallel to the railway line and is a tangent to the path as shown in Diagram 2.

Diagram 2
It is decided that the land, represented by the shaded area in Diagram 2, will become a car park.
Calculate the area of the car park.
8. Given that the equation

$$
x^{2}+y^{2}-2 p x-4 p y+3 p+2=0
$$

represents a circle, determine the range of values of p.
9. Acceleration is defined as the rate of change of velocity.

An object is travelling in a straight line. The velocity, $v \mathrm{~m} / \mathrm{s}$, of this object, t seconds after the start of the motion, is given by $v(t)=8 \cos \left(2 t-\frac{\pi}{2}\right)$.
(a) Find a formula for $a(t)$, the acceleration of this object, t seconds after the start of the motion.
(b) Determine whether the velocity of the object is increasing or decreasing when $t=10$.
(c) Velocity is defined as the rate of change of displacement.

Determine a formula for $s(t)$, the displacement of the object, given that $s(t)=4$ when $t=0$.
[BLANK PAGE]
[BLANK PAGE]

