Trigonometry: The Wave Function

It is possible to model the behaviour of waves in real-life situations (e.g. the interaction of sound waves or the tides where two bodies of water meet) using trigonometry. Consider the result of combining the waves represented by the functions $y = \sin x$ and $y = \cos x$. To find what the resultant graph would look like, complete the table of values (accurate to 1 d.p.) and plot on the axes below.

	0°	45°	90°	135°	180°	225°	270°	315°	360°
sinx °									
cosx °									
sinx ° + cosx °									

Looking at the graph of $y = \sin x ^\circ + \cos x ^\circ$ above, we can compare it to cosine graph shifted 45° to the right (i.e. $y = \cos(x - \alpha)^\circ$), and stretched vertically by a factor of roughly 1.4 (i.e. $y = k\cos x ^\circ$).

It is important to note, however, that the graph could also be described as a cosine graph shifted to the left, and also as a sine graph! Therefore, $y = sinx \circ + cosx \circ could$ also be written as:

$$y = 1.4\cos(x + ____)$$
 OR $y = 1.4\sin(x - ____)$ OR $y = 1.4\sin(x + ____)$

Rather than drawing an approximate graph, it is more useful if we use an algebraic method.

NOTE: you will only be asked to use one specific form to describe a function, not all four!

Example 1: Write $\sin x \circ + \cos x \circ$ in the form $k \cos(x - \alpha) \circ$, where $0 \le \alpha \le 360$.

angles, but be written a	only when the as a wave funct	angles of both toon, but 2cos2x +	he sin and cos t 5sin3x could no	erm are the sam t).	e (i.e. 2cos2x + 5s	in2x car
				where $0 \le \alpha \le 2\pi$		
Example	e 3: Write 12cos	x $^{\circ}$ - 5 sin x $^{\circ}$ in th	ne form <i>k</i> sin(x -	α)°, where $0 \le \alpha$	≤ 360	
Fyample	a 1. Writa 7sin71	a.cos70 in the fo	$a_{rm} k \sin(2\theta + \alpha)$), where $0 \le \alpha \le 2$	π.	
Lxumple	T. WITCE ZSIIIZO		Jilli K Jill(20 · W	,, where $0 \le u \le 2$		

This technique can also include the difference between waves and to include double (or higher)

Solving Trig Equations Using the Wave Function

In almost all cases, questions like these will be split into two parts, with a) being a "write in the form $y = k \cos(x - \alpha)$ " followed by b) asking "hence or otherwise solve......".

Use the wave function from part a) to solve the equation!

Example 5:

a) Write $2\cos x$ ° - $\sin x$ ° in the form $k\cos(x-\alpha)$ ° where $0 \le \alpha \le 360$

b) Hence solve $2\cos x \circ - \sin x \circ = -1$ where $0 \le x \le 360$

Maximum and Minimum Values and Sketching Wave Function Graphs

Look back at the graph you drew of $\sin x \circ + \cos x \circ$. The maximum value of the graph is $\sqrt{2}$ at the point where $x = 45^\circ$, and the minimum value is $-\sqrt{2}$ at the point where $x = 225^\circ$. Compare these to the maximum and minimum of $y = \cos x \circ$, i.e. a maximum of 1 where $x = 0^\circ$ or 360° and a minimum of -1 where $x = 180^\circ$.

Since $\sin x \circ + \cos x \circ = \sqrt{2} \cos(x - 45)^\circ$, we can see that the maximum and minimum values change from ± 1 to $\pm k$.

The maximum value occurs where $\sqrt{2} \cos(x-45)^\circ = \sqrt{2}$, i.e. $\cos(x-45)^\circ = 1$. Similarly, the minimum value occurs where $\sqrt{2} \cos(x-45)^\circ = -\sqrt{2}$, i.e. $\cos(x-45)^\circ = -1$

For $a \sin x + b \cos x = k \cos(x - \alpha)$, k > 0:

Maximum = kwhen $cos(x - \alpha) = 1$

Minimum = -kwhen $cos(x - \alpha) = -1$

Example 6:

a) Write $\sqrt{3}\sin x + \cos x$ in the form $k \cos(x - \alpha)$, where $0 \le \alpha \le 2\pi$

b) Find algebraically for $0 \le x \le 2\pi$:

(i) The maximum and minimum turning points of $y = \sqrt{3}\sin x + \cos x$.

(ii) The points of intersection of $y = \sqrt{3}\sin x + \cos x$ with the coordinate axes.

c) Sketch and annotate the graph of $y = \sqrt{3}\sin x + \cos x$ for $0 \le x \le 2\pi$.

Recognising Trig Equations

The trig equations we can be asked to solve at Higher level can be split into three types based on the angle (i.e. x° , $2x^{\circ}$, $3x^{\circ}$ etc) and the function(s) (i.e. sin, cos, tan, sin & cos).

Type One: One Function One Angle

e.g.:
$$2 \sin 4x + 1 = 0$$

 $\tan^2 x = 3$
 $3\sin^2 x - 4\sin x + 1 = 0$

$$x^{2} = 0$$
 $x^{2} = 3$

Inverse sin/cos/tan to solve

Type Two: **Two Functions** One Angle

e.g.:
$$\sin x + \cos x = 1$$

 $3\cos(2x) + 4\sin(2x) = 0$
 $\cos(4\theta) - \sqrt{3}\sin(4\theta) = -1$

Type Three:

Two Angles

e.g.:
$$5\cos(2\theta) = \cos\theta - 2$$

 $2\sin(2x) + \sin(x) = -0.5$
 $2\cos 2x - \sin x + 5 = 0$

1. Rewrite the double angle and factorise (change cos2x to the SINGLE ANGLE function)

2. Solve as Type One

Past Paper Example:

a) The expression $\sqrt{3} \sin x^{\circ} - \cos x^{\circ}$ can be written in the form $k \sin(x - \alpha)^{\circ}$, where k > 0 and $0 \le \alpha < 360$.

Calculate the values of k and α .

b) Determine the maximum value of 4 + 5 cosx° - $5\sqrt{3}$ sinx°, where $0 \le \alpha < 360$, and state the value of x for which it occurs.