A measurement which only describes the magnitude (i.e. size) of the object is called a scalar quantity, e.g. Glasgow is 11 miles from Airdrie. A vector is a quantity with magnitude and direction, e.g. Glasgow is 11 miles from Coatbridge on a bearing of 270°.

The position of a point in 3-D space can be described if we add a third coordinate to indicate height.

The rules of vectors can be used in either 2 or 3 dimensions:

The **magnitude** of a vector is its length, which can be determined by Pythagoras' Theorem. The magnitude of \underline{a} is written as $|\underline{a}|$.

If
$$\underline{u} = \begin{pmatrix} a \\ b \end{pmatrix}$$
, then $|\underline{u}| = \sqrt{a^2 + b^2}$
If $\underline{u} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, then $|\underline{u}| = \sqrt{a^2 + b^2 + c^2}$

Example 2: Determine $|\underline{a}|$ and $|\underline{b}|$ in the examples above.

Addition of Vectors

Two (or more) vectors can be added together to produce a resultant vector.

A **unit vector** is a vector with magnitude = 1.

Example 6: Find the components of the unit vector parallel to $\underline{h} = \begin{bmatrix} -3 \\ -3 \end{bmatrix}$

To find the components of a unit vector:

- Find the magnitude of the given vector
- Divide components by the magnitude

Vectors in 3D can also be described in terms of the three unit vectors $\underline{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \underline{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \text{ and } \underline{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$

which are parallel to the x, y, and z axes respectively.

Example 7: $\underline{u} = 3\underline{i} + 2\underline{j} - 6\underline{k}, \ \underline{v} = -\underline{i} + 5\underline{j}$.

a) Express $\underline{u} + \underline{v}$ in component form

b) Find |<u>u</u> + <u>v</u> |

 Consider the vector \overrightarrow{AB} in the diagram opposite. \overrightarrow{AB} is the resultant vector of going along <u>a</u> in the opposite direction, followed by <u>b</u> in the correct direction.

So, $\overrightarrow{AB} = -\underline{a} + \underline{b}$, i.e.:

Position Vectors

 $\mathsf{AB} = \underline{b} - \underline{a}$

Example 8: L is the point (4, -7, 2), M is the point (-5, -3, -1). Find the components of \overrightarrow{LM} .

Collinearity

Example 10: Points F, G and H have coordinates (6, 1, 5), G (4, 4, 4), and (-2, 13, 1) respectively. Show that F, G and H are collinear, and find the ratio in which G divides \overrightarrow{FH} .

The Section Formula

P divides \overrightarrow{AB} in the ratio 2:3. By examining the diagram, we can find a formula for <u>p</u> (i.e. OP).

 $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$

In general, if P divides AB in the ratio m:n, then:

$$\underline{p} = \frac{1}{n+m} (n\underline{a} + m\underline{b})$$

Example 11: A is the point (3, -1, 2) and B is the point (7, -5, 14). Find the coordinates of P such that P divides AB in the ratio 1:3.

The Scalar Product

We have seen that we can add and subtract vectors, and multiply a vector by a scalar quantity. It is also possible to multiply two vectors together to give a scalar quantity (i.e. a number, not a vector).

The scalar product of vectors \underline{a} and \underline{b} is written as \underline{a} . \underline{b} . It is also known as the **dot product**.

If <u>a</u> =	$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ and $\underline{b} =$	$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$, then	$\underline{a} \cdot \underline{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$
		$\begin{pmatrix} b_2 \\ b_3 \end{pmatrix}$, then	$\underline{u} \cdot \underline{b} = u_1 b_1 + u_2 b_2 + u_3 b_3$

Example 12: $\underline{a} = \underline{i} + 2\underline{j} + 2\underline{k}$, and $\underline{b} = 2\underline{i} + 3\underline{j} - 6\underline{k}$. Evaluate $\underline{a} \cdot \underline{b}$.

Angle Form of the Scalar Product

a and b point away from the vertex

The scalar product can also be found if we know the magnitudes of the vectors and the size of the angle between them.

For vectors \underline{a} and \underline{b} , the scalar product can also be written as:

Note: •

 $\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos\theta$

0 ≤ θ ≤ 180°

Example 13: Find the scalar product in each case below, where $|\underline{a}| = 6$ and $|\underline{b}| = 10$.

θ

b

Perpendicular Vectors	
A special case of the scalar product occurs when θ = 90°:	$a.b = a b \cos 90^\circ$
	= <i>a</i> <i>b</i> × 0
If $a.b = 0$, then a and b are perpendicular	= 0

Example 14: P, Q, and R are the points (1, 1, 2), (-1, -1, 0) and (3,-4, -1) respectively. Find the components of \overrightarrow{QP} and \overrightarrow{QR} , and hence show that the vectors are perpendicular.

The Angle Between Two Vectors

Example 15: A is the point (1, 2, 3), B (6, 5, 4), and C (-1, -2, -6). Calculate ∠ABC.

Other Uses of the Scalar Product					
For vectors <u>a</u> , <u>b</u> , and <u>c</u> :	$\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{a}$	$\underline{a} \cdot (\underline{b} + \underline{c}) = \underline{a} \cdot \underline{b} + \underline{a} \cdot \underline{c}$			
Example 16: $ \underline{a} = 5$ and $ \underline{b} = 8$. Find $\underline{a} \cdot (\underline{a} + \underline{b})$					

Past Paper Example 1: The diagram shows a square-based pyramid of height 8 units. Square OABC has a side length of 6 units. The coordinates of A and D are (6, 0, 0) and (3, 3, 8). C lies on the y - axis.

a) Write down the coordinates of B.

b) Determine the components of \overrightarrow{DA} and \overrightarrow{DB} .

c) Calculate the size of $\angle ADB$.

Past Paper Example 2:

a) Show that the points A (-7, -8, 1), T (3, 2, 5) and B (18, 17, 11) are collinear and state the ratio in which T divides AB.

b) The point C lies on the x-axis.

If TB and TC are perpendicular, find the coordinates of C.