Vectors: Revision from National 5

A measurement which only describes the magnitude (i.e. size) of the object is called a scalar quantity, e.g. Glasgow is 11 miles from Airdrie. A vector is a quantity with magnitude and direction, e.g. Glasgow is 11 miles from Coatbridge on a bearing of 270°.

The position of a point in 3-D space can be described if we add a third coordinate to indicate height.

Example 1: OABC DEFG is a cuboid, where F is the point $(5,4,3)$. Write down the coordinates of the points:
a) A
b) D
c) G
d) M, the centre of face ABFE

The rules of vectors can be used in either 2 or 3 dimensions:

Directed line segment $\overrightarrow{\mathrm{OA}}$
Position vector \underline{a}

Components $\binom{3}{4}$

Directed line segment $\overrightarrow{O B}$
Position vector \underline{b}
Components $\left(\begin{array}{l}2 \\ 5 \\ 4\end{array}\right)$

The magnitude of a vector is its length, which can be determined by Pythagoras' Theorem. The magnitude of \underline{a} is written as $|\underline{a}|$.

Example 2: Determine $|\underline{a}|$ and $|\underline{b}|$ in the If $\underline{u}=\binom{a}{b}$, then $|\underline{u}|=\sqrt{a^{2}+b^{2}}$

$$
\text { If } \underline{u}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \text {, then }|\underline{u}|=\sqrt{a^{2}+b^{2}+c^{2}}
$$

Addition of Vectors

Two (or more) vectors can be added together to produce a resultant vector.

In general:
$\overrightarrow{A B}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}} \quad$ and \quad If $\underline{u}=\left(\begin{array}{l}\mathrm{a} \\ \mathrm{b} \\ \mathrm{c}\end{array}\right)$ and $\underline{v}=\left(\begin{array}{l}d \\ e \\ f\end{array}\right)$, then $\underline{u}+\underline{v}=\left(\begin{array}{l}a+d \\ b+e \\ c+f\end{array}\right)$

Example 3: Find $p+q$ when $p=\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)$ and $q=\left(\begin{array}{c}7 \\ -7 \\ 4\end{array}\right) . \quad\binom{\mathrm{x}}{4}+\binom{12}{\mathrm{y}}=\binom{9}{-2}$

Subtraction of Vectors

Subtraction of vectors can be considered as going along the second vector in the wrong direction.

$$
\text { If } \underline{u}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \text { and } \underline{v}=\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right) \text {, then } \underline{u}-\underline{v}=\left(\begin{array}{l}
a-d \\
b-e \\
c-f
\end{array}\right)
$$

Multiplication by a Scalar Quantity

If we go along \underline{a} twice, the resultant vector is $\underline{a}+\underline{a}=2 \underline{a}$. As we
 have not changed direction, it follows that $2 \underline{a}$ must be parallel to \underline{a}.

$$
\text { If } \underline{u}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \text { then } k \underline{u}=\left(\begin{array}{l}
k a \\
k b \\
k c
\end{array}\right)
$$

Example 5: If $\underline{b}=\left(\begin{array}{c}4 \\ 0 \\ -2\end{array}\right)$ and $\underline{c}=\left(\begin{array}{c}-3 \\ -5 \\ 5\end{array}\right)$, find:
a) $3 \underline{b}$
b) $2 \underline{b}+\underline{c}$
c) $\underline{c}-\frac{1}{2} \underline{b}$

Unit Vectors

A unit vector is a vector with magnitude $=1$.
Example 6: Find the components of the unit vector parallel to $\underline{h}=\left(\begin{array}{c}2 \\ -3 \\ 6\end{array}\right)$

To find the components of a unit vector:

- Find the magnitude of the given vector
- Divide components by the magnitude

Vectors in 3D can also be described in terms of the three unit vectors $\underline{i}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), j=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, and $\underline{k}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, which are parallel to the x, y, and z axes respectively.

Example 7: $\underline{u}=3 \underline{i}+2 \underline{j}-6 \underline{k}, \underline{v}=-\underline{i}+5 \underline{j}$.
a) Express $\underline{u}+\underline{v}$ in component form
b) Find $|\underline{u}+\underline{v}|$

Position Vectors

Consider the vector $\overrightarrow{A B}$ in the diagram opposite. $\overrightarrow{A B}$ is the resultant vector of going along \underline{a} in the opposite direction, followed by \underline{b} in the correct direction.

$$
\text { So, } \overrightarrow{\mathrm{AB}}=-\underline{a}+\underline{b} \text {, i.e.: } \quad \overrightarrow{\mathrm{AB}}=\underline{b}-\underline{a}
$$

Example 8: L is the point $(4,-7,2), M$ is the point $(-5,-3,-1)$. Find the components of $\overrightarrow{\mathrm{LM}}$.

Example 9: P is the point $(3,7,-1) . \overrightarrow{\mathrm{PQ}}$ has components $\left(\begin{array}{c}-4 \\ 9 \\ -3\end{array}\right)$.
Find the coordinates of Q .

Collinearity

Example 10: Points F, G and H have coordinates $(6,1,5), G(4,4,4)$, and $(-2,13,1)$ respectively. Show that F, G and H are collinear, and find the ratio in which G divides $\overrightarrow{\mathrm{FH}}$.

The Section Formula

P divides $\overrightarrow{A B}$ in the ratio 2:3. By examining the diagram, we can find a formula for p (i.e. $\overrightarrow{O P}$).
$\overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{\mathrm{AP}}$

In general, if P divides $A B$ in the ratio $m: n$, then:
$\underline{p}=\frac{1}{n+m}(n \underline{a}+m \underline{b})$
Example 11: A is the point $(3,-1,2)$ and B is the point $(7,-5,14)$. Find the coordinates of P such that P divides $A B$ in the ratio 1:3.

The Scalar Product

We have seen that we can add and subtract vectors, and multiply a vector by a scalar quantity. It is also possible to multiply two vectors together to give a scalar quantity (i.e. a number, not a vector).

The scalar product of vectors \underline{a} and \underline{b} is written as $\underline{a} \cdot \underline{b}$. It is also known as the dot product.

$$
\text { If } \underline{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \underline{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \text {, then } \underline{a} \cdot \underline{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Example 12: $\underline{a}=\underline{i}+2 \dot{j}+2 \underline{k}$, and $\underline{b}=2 \underline{i}+3 \dot{j}-6 \underline{k}$. Evaluate $\underline{a} \cdot \underline{b}$.

Angle Form of the Scalar Product

The scalar product can also be found if we know the magnitudes of the vectors and the size of the angle between them.

For vectors \underline{a} and \underline{b}, the scalar product can also be written as:

$$
\underline{a} \cdot \underline{b}=|\underline{a} \| \underline{b}| \cos \theta
$$

Note: - \underline{a} and \underline{b} point away from the vertex

- $0 \leq \theta \leq 180^{\circ}$

Example 13: Find the scalar product in each case below, where $|\underline{a}|=6$ and $|\underline{b}|=10$.
a)

b)

c)

A special case of the scalar product occurs when $\theta=90^{\circ}$:

If $a . b=0$, then a and b are perpendicular
$a . b=|a||b| \cos 90^{\circ}$
$=|a||b| \times 0$
$=0$

Example 14: P, Q, and R are the points $(1,1,2),(-1,-1,0)$ and $(3,-4,-1)$ respectively. Find the components of $\overrightarrow{\mathrm{QP}}$ and $\overrightarrow{\mathrm{QR}}$, and hence show that the vectors are perpendicular.

The Angle Between Two Vectors

We can rearrange the angle form of the scalar product to give $\cos \theta=\frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$.

More specifically:

If the question gives you three points, you MUST find the components of the vectors pointing AWAY from the vertex first!

Example 15: A is the point $(1,2,3), B(6,5,4)$, and $C(-1,-2,-6)$. Calculate $\angle A B C$.

Other Uses of the Scalar Product

For vectors $\underline{a}, \underline{b}$, and \underline{c} :

$$
\underline{\underline{a} \cdot \underline{b}}=\underline{b} \cdot \underline{\underline{a}}
$$

$$
\underline{a} \cdot(\underline{b}+\underline{c})=\underline{a} \cdot \underline{b}+\underline{a} \cdot \underline{c}
$$

Example 16: $|\underline{a}|=5$ and $|\underline{b}|=8$. Find $\underline{a} \cdot(\underline{a}+\underline{b})$

Past Paper Example 1: The diagram shows a square-based pyramid of height 8 units. Square OABC has a side length of 6 units. The coordinates of A and D are $(6,0,0)$ and $(3,3,8)$. C lies on the y-axis.
a) Write down the coordinates of B.
b) Determine the components of $\overrightarrow{\mathrm{DA}}$ and $\overrightarrow{\mathrm{DB}}$.

c) Calculate the size of $\angle \mathrm{ADB}$.

Past Paper Example 2:

a) Show that the points $A(-7,-8,1), T(3,2,5)$ and $B(18,17,11)$ are collinear and state the ratio in which T divides $A B$.
b) The point C lies on the x-axis.

If $T B$ and $T C$ are perpendicular, find the coordinates of C.

