Finding the value of a compound angle is not quite as simple as adding together the values of the component angles, e.g. $\sin 90^{\circ} \neq \sin 60^{\circ}+\sin 30^{\circ}$. The following formulae must be used:

$$
\sin (A+B)=\sin A \cos B+\cos A \sin B
$$

$$
\sin (A-B)=\sin A \cos B-\cos A \sin B
$$

Example 1: Expand each of the following:
a) $\sin (X+Y)$
b) $\sin (Q+3 P)$

Example 2: Find the exact value of $\sin 75^{\circ}$.

Example 3: A and B are acute angles where $\tan A=\frac{12}{5}$ and $\tan B=\frac{3}{4}$. Find the value of $\sin (A+B)$.

Example 4: Expand each of the following:
a) $\sin (\alpha-\beta)$
b) $\sin \left(2 B-\frac{2 \pi}{3}\right)$

Example 5: In the diagram opposite:
$A C=C D=2$ units, and $A B=B C=1$ unit.
Show that $\sin X$ is exactly $\frac{1}{\sqrt{10}}$.

$\cos (A+B)=\cos A \cos B-\sin A \sin B$

 $\cos (A-B)=\cos A \cos B+\sin A \sin B$Example 6: Expand the following:
a) $\cos (X-Y)$
b) $\cos (X+315)^{\circ}$

Example 7:

a) Show that $\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12}$

To summarise:
b) Hence find the exact value of $\cos \frac{\pi}{12}$

$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$

Double Angle Formulae

$\sin 2 A=\sin (A+A)$

$$
\cos 2 \mathrm{~A}=\cos (\mathrm{A}+\mathrm{A})
$$

=

Since $\cos ^{2} x^{\circ}=1-\sin ^{2} x^{\circ}$ and $\sin ^{2} x^{\circ}=1-\cos ^{2} x^{\circ}$, we can further expand the formula for $\cos 2 A$:
$\cos 2 \mathrm{~A}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}$
$\cos 2 A=\cos ^{2} A-\sin ^{2} A$
$=$

$\sin 2 A=2 \sin A \cos A$

To summarise:

	$=\cos ^{2} A-\sin ^{2} A$
$\cos 2 A$	$=2 \cos ^{2} A-1$
	$=1-2 \sin ^{2} A$

Example 8: Express the following using double angle formulae:
a) $\sin 2 X$
b) $\sin 6 Y$
c) $\cos 2 X$ (sine version)
d) $\cos 8 \mathrm{H}$ (cosine version)
e) $\sin 5 Q$
f) $\cos \theta$ (\cos and \sin version)

Example 9: $\sin \theta=\frac{2}{\sqrt{13}}$, where θ is an acute angle. Find the exact values of:
a) $\sin (2 \theta)$
b) $\cos (2 \theta)$

Solving Trig Equations

Example 10 (Nat 5 Revision): Solve:
a) $\cos x^{\circ}=0.588$
$\left\{0 \leq x \leq 360^{\circ}\right\}$
b) $3 \sin x^{\circ}+2=0$
$\left\{0 \leq x \leq 360^{\circ}\right\}$

Trig equations can also often involve multiple angles, compound angles or powers of sin, cos or tan. In all cases, you must pay close attention to the range of allowed values for x.

Example 11: Solve $\cos 2 x^{\circ}=\frac{1}{2}$ for $0 \leq x \leq 360$

Powers of \sin , \cos and tan

If a trig equation involves $\sin ^{2} x$ etc, rearrange as normal and take the square root of both sides. Remember that this gives both a positive AND negative answer!

Example 13: Solve $4 \cos ^{2} x-3=0$ for $0 \leq x \leq 2 \pi$

Trig equations can also be written in forms which resemble quadratic equations: to solve these, treat them as such, and solve by factorisation.

Example 14: Solve $6 \sin ^{2} x^{\circ}-\sin x^{\circ}-2=0$ for $0 \leq x \leq 360^{\circ}$

Solving Mixed Trig Equations

To solve trig equations with combinations of double- and single-angle angle terms:

- Rewrite the double angle term using the formulae (use the formulae list!)
- Factorise
- Solve each factor for \boldsymbol{x}

When the term is $\cos 2 X$, the version of the double angle formula we use depends on the other trig term in the equation: use $2 \cos ^{2} x-1$ if the other term is $\cos x ; 1-2 \sin ^{2} x$ if the other term is $\sin x$.

Example 16: Solve $2 \cos 2 x-7 \cos x=0,0 \leq x \leq 2 \pi$

Trigonometric Identities

NOTE: these are important formulae which are not provided in the exam paper formula sheets!

$$
\frac{\sin x^{\circ}}{\cos x^{\circ}}=\tan x^{\circ}
$$

$$
\sin ^{2} x^{\circ}+\cos ^{2} x^{\circ}=1
$$

Note that due to the second formula, we can also say that:

$$
\begin{aligned}
& \cos ^{2} x^{\circ}=1- \\
& \text { it an identity } \\
& \text { be changed } \\
& \text { Prove that: }
\end{aligned}
$$

a) $\cos ^{4} \alpha-\sin ^{4} \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha$
b) $\frac{1}{\tan x}-\tan x=\frac{2}{\tan 2 x}$

Past Paper Example 1: In the diagram,
$\angle \mathrm{DEC}=\angle \mathrm{CEB}=x^{\circ}$, and $\angle \mathrm{CDE}=\angle \mathrm{BEA}=90^{\circ}$.
$C D=1$ unit; $D E=3$ units.

By writing $\angle \mathrm{DEA}$ in terms of x, find the exact value of $\cos (D \hat{E} A)$.

Past Paper Example 2: Find the points of intersection of the graphs of $y=3 \cos 2 x^{\circ}+2$ and $y=1-\cos x^{\circ}$ in the interval $0 \leq x \leq 360^{\circ}$.

Past Paper Example 3: Solve algebraically the equation

$$
\sin 2 x=2 \cos ^{2} x \quad \text { for } 0 \leq x \leq 2 \pi
$$

