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Quadratic Functions 
 

Solving Quadratic Equations (Revision from Nat 5) 
 

Quadratic equations must be solved by factorising when one side is equal to zero. 
 

Example 1: Solve: 
 

a) x2 – 5x + 4 = 0 b) 3x2 – 4x – 4 = 0 

  
  
  
  
  
  
  

c) (x – 5)(x + 2) = 4 d) 4x2 – 3x – 2 = 0  (answer to 2 d.p.) 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

 

Finding the Equation of a Quadratic Function From Its Graph: y = k(x – a)(x – b) 
 

If the graph of a quadratic function has roots at x = -1 
and x = 5, a reasonable guess at its equation would be  
y = x 2 – 4x – 5, i.e. from y = (x + 1)(x – 5). 

 

 

However, as the diagram shows, there are many 
parabolas which pass through these points, all of which 
belong to the family of functions y = k (x + 1) (x – 5).  

 

To find the equation of the original function, we need 
the roots and one other point on the curve (to allow us to 
determine the value of k). 

 

Example 2: State the equation of the graph below in the form y = ax 2 + bx + c . 
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Completing the Square (Revision) 
 

The diagram shows the graphs of two quadratic functions.  

 

 

If the graph of y = x 2 is shifted q units to the right, 
followed by r units up, then the graph of y = (x – q) 2 + r  is 
obtained. 
 

As the turning point of y = x 2 is (0, 0), it follows that the 
new curve has a turning point at (q , r). 
 

A quadratic equation written as y = p (x - q) 2 + r  is said 
to be in the completed square form. 

 

Example 3:  (i) Write the following in the form y = (x + q) 2 + r  and find the coordinates of the TP. 
  

 (ii) Hence state the minimum value of y and the corresponding value of x . 
 

a) y = x 2 + 6x + 10 b) y = x 2 - 3x + 1 

  

  

  

  

  

  

  

  

  
  

Completing the Square when the x2 Coefficient ≠ 1 
  

Example 4: Write y = 3x 2 + 12x + 5 in the form 
y = p(x + q) 2 + r. 

Example 5: Write y = 5 + 12x  – x 2 in the form  
y = p - (x + q) 2. 

  

  

  

  

  

  

  

  

  

  

  

  

  

Example 6:    

 a) Write y = x 2 - 10x + 28 in the form  
y =  (x + p) 2 + q. 

b) Hence find the maximum value of 
 28 10x  - x

18
2

+
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Solving Quadratic Inequations 
  

Quadratic inequations are easily solved by making a sketch of the equivalent quadratic function, then 
determining the regions above or below the x – axis. 

  

Example 7: Find the values of x  for which:  a) 2x 2 – 7x + 6 > 0 b) 2x 2 – 7x + 6 < 0 
 

First, sketch y = 2x 2 – 7x + 6 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
Roots of Quadratic Equations and The Discriminant (Revision) 

 

For y = ax 2 + bx + c, b 2 – 4ac is known as 
the discriminant. 

• b 2 – 4ac > 0 gives real, unequal roots 

• b 2 – 4ac = 0 gives real, equal roots 

• b 2 – 4ac < 0 gives NO real roots 
 

If b 2 – 4ac  gives a perfect square, the roots are RATIONAL 
If b 2 – 4ac  does NOT give a perfect square, the roots are IRRATIONAL (i.e. surds)  

  

Example 8: Find the value(s) of p given that  
2x 2 + 4x + p = 0  has real roots. 

Example 9: Show that the roots of x2 + px = 3 – x 
are always real for all values of p. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  
 

Example 10: Find the value(s) of r given that x 2 + (r - 3)x + r  = 0 has no real roots. 
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Tangents to Curves: Using the Discriminant 
 

To find the points of contact between a line and a curve, we make the curve and line equations 
equal (i.e. make y = y) to obtain a quadratic equation, and solve to find the x-coordinates. 
 

By finding the discriminant of this quadratic equation, we can work out how many points of contact 
there are between the line and the curve. There are 3 options: 

 

   
Two points of contact One point of contact No points of contact 

2 distinct roots Equal roots No real roots 

b 2 – 4ac > 0 b 2 – 4ac = 0 b 2 – 4ac < 0 
 

The most common use for this technique is to show that a line is a tangent to a curve 
 

Example 11: Find the value of c such that the line y = 3x – 13 is a tangent to the curve  
y = x 2 – 7x + c, and state the coordinates of the point of contact.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 12: Find two values of m  such that y = mx - 7 is a tangent to y = x 2 + 2x – 3 
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Past Paper Example 1: Express 2x2 + 12x + 1 in the form a(x + b)2 + c. 

 

 

 

 

 

 

 

 

 

 

Past Paper Example 2: Given that 2x2 + px + p + 6 = 0 has no real roots, find the range of values  
for p. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Past Paper Example 3:  Show that the roots of   (k – 2)x 2 – 3kx + 2k  = -2x  are always real. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


