Quadratic Functions

Solving Quadratic Equations (Revision from Nat 5)

Quadratic equations must be solved by factorising when one side is equal to zero.

Example 1: Solve: a) $x^2 - 5x + 4 = 0$ b) $3x^2 - 4x - 4 = 0$ c) (x - 5)(x + 2) = 4d) $4x^2 - 3x - 2 = 0$ (answer to 2 d.p.)

Finding the Equation of a Quadratic Function From Its Graph: y = k(x - a)(x - b)

If the graph of a quadratic function has roots at x = -1and x = 5, a reasonable guess at its equation would be $y = x^2 - 4x - 5$, i.e. from y = (x + 1)(x - 5).

However, as the diagram shows, there are many parabolas which pass through these points, all of which belong to the **family** of functions y = k (x + 1) (x - 5).

To find the equation of the original function, we need the roots and one other point on the curve (to allow us to determine the value of k).

Example 2: State the equation of the graph below in the form $y = ax^2 + bx + c$.

Completing the Square (Revision)

The diagram shows the graphs of two quadratic functions.

If the graph of $y = x^2$ is shifted q units to the right, followed by r units up, then the graph of $y = (x - q)^2 + r$ is obtained.

As the turning point of $y = x^2$ is (0, 0), it follows that the new curve has a turning point at (q, r).

A quadratic equation written as $y = p (x - q)^2 + r$ is said to be in the **completed square form.**

Example 3: (i) Write the following in the form $y = (x + q)^2 + r$ and find the coordinates of the TP.

(ii) Hence state the minimum value of y and the corresponding value of x .

a) $y = x^2 + 6x + 10$

b)
$$y = x^2 - 3x + 1$$

 Completing the Square when the x² Coefficient \neq 1

 Example 4: Write $y = 3x^2 + 12x + 5$ in the form

 $y = p(x + q)^2 + r$.
 Example 5: Write $y = 5 + 12x - x^2$ in the form

 $y = p \cdot (x + q)^2$.
 $y = p \cdot (x + q)^2$.

 Example 6:
 a) Write $y = x^2 - 10x + 28$ in the form

 $y = (x + p)^2 + q$.
 b) Hence find the maximum value of $\frac{18}{x^2 - 10x + 28}$

Example 10: Find the value(s) of r given that $x^2 + (r - 3)x + r = 0$ has no real roots.

To find the points of contact between a line and a curve, we make the curve and line equations equal (i.e. make y = y) to obtain a quadratic equation, and solve to find the x-coordinates.

By finding the discriminant of this quadratic equation, we can work out **how many** points of contact there are between the line and the curve. There are 3 options:

The most common use for this technique is to show that a line is a tangent to a curve

Example 11: Find the value of *c* such that the line y = 3x - 13 is a tangent to the curve $y = x^2 - 7x + c$, and state the coordinates of the point of contact.

Example 12: Find two values of m such that y = mx - 7 is a tangent to $y = x^2 + 2x - 3$

Past Paper Example 1: Express $2x^2 + 12x + 1$ in the form $a(x + b)^2 + c$.

Past Paper Example 2: Given that $2x^2 + px + p + 6 = 0$ has no real roots, find the range of values for *p*.

Past Paper Example 3: Show that the roots of $(k - 2)x^2 - 3kx + 2k = -2x$ are always real.