In the exam, diagrams are provided whenever the question involves a graph. However, this is often not the case when working from the textbook: it is therefore important that we are able to sketch basic graphs where necessary, as the question usually becomes simpler when you can picture it.

Example 1: in the spaces provided, make a **basic** sketch of the graph(s) of the function(s) stated.

a)
$$y = 2x + 1$$

b) $3x + 4y - 12 = 0$
c) $y = -1$ and $x = 5$
f) $y = (x - 2)^2$ and $y = 2x - x^2$
Example 2: Sketch and annotate the graph of $y = 11 - (x + 3)^2$
 $y = 11 - (x + 3)^2$
 $y = 11 - (x + 3)^2$

Transformation of Graphs

We have seen how the graph of y = sin(x) is different to that of y = sin(2x), and how $y = x^2$ differs from $y = (x - 1)^2$. The six operations below are used to transform the graph of a function:

I Bryson, Coatbridge High School Mathematics Department

Multiple Transformations

Often, are asked to perform more than one transformation on a graph. Where appropriate, always leave sliding vertically until last.

x

Example 6: Part of the graph of y = f(x) is shown.

On separate diagrams, sketch:

У

0

a)
$$y = f(-x) + 2$$

b)
$$y = -\frac{1}{2} f(x + 1)$$

Past Paper Example: The diagram shows a sketch of the function y = f(x).

To the diagram, add the graphs of:

a)
$$y = f(2x)$$

b) y = 1 - f(2x).

Trigonometric Graphs

Example 1: Sketch the graphs of $y = \sin x^\circ$, $y = \cos x^\circ$ and $y = \tan x^\circ$ below.

For trig graphs, how soon the graph repeats itself horizontally is known as the **period**, and half of the vertical height is known as the **amplitude**.

Function		Pe	eriod	Amplitude	
y = sinx °					
y = cosx °					
y = tanx °					
$y = a \sinh x \circ + c$ and $y = a \cosh x \circ + c$:	a = amplitude b = waves in 360° c = vertical shift		y = a tanbx ° + c:	b = "waves" in 180° c = vertical shift	

Compound Angles

A compound angle is one containing two parts, e.g. $(x - 60)^{\circ}$. The graphs of trig functions including compound angles are shifted left or right along the x - axis (60° to the right in the example above).

Example 5: Sketch the following graphs, showing the coordinates of the maximum and minimum points.

Exact Values

Consider the following triangles:

Once we have found the lengths of the missing sides (by Pythagoras' Theorem), the following table of values can be constructed:

A right-angled triangle made by halving an equilateral triangle of side 2 units

A right-angled triangle made by halving an square of side 1 unit

	0 °	30°	45°	60°	90°		9	0°	
		(_)		(_)			(180° - x)	(x)	
	0	$\left(\frac{\pi}{6}\right)$	$\left(\frac{\pi}{4}\right)$	$\left(\frac{\pi}{3}\right)$	$\left(\frac{\pi}{2}\right)$		SIN	ALL	
Sin						180° -			– ^{0°} 360°
							Quadrant Z	Quadrant 1	
							Quadrant 3	Quadrant 4	
Cos							TAN Positive	COS Positive	
Tan							(180° + <i>x</i>)	(360°-x)	
							27		

Example 6: State the exact values of:

a) sin 150°

b) tan 315°

c) $\cos \frac{7\pi}{6}$