Sketching Graphs (Revision)

In the exam, diagrams are provided whenever the question involves a graph. However, this is often not the case when working from the textbook: it is therefore important that we are able to sketch basic graphs where necessary, as the question usually becomes simpler when you can picture it.

Example 1: in the spaces provided, make a basic sketch of the graph(s) of the function(s) stated.
a) $y=2 x+1$
b) $3 x+4 y-12=0$
\mid
c) $y=-1$ and $x=5$
d) $y=x^{2}$ and $y=4$
e) $y=x^{2}-4$
f) $y=(x-2)^{2}$ and $y=2 x-x^{2}$

$|$| e) $y=x^{2}-4$ |
| :--- |
| |

Example 2: Sketch and annotate the graph of $y=x^{2}-2 x-8$

Example 3: Sketch and annotate the graph of $y=11-(x+3)^{2}$

We have seen how the graph of $y=\sin (x)$ is different to that of $y=\sin (2 x)$, and how $y=x^{2}$ differs from $y=(x-1)^{2}$. The six operations below are used to transform the graph of a function:

Example 4: To the graph of $y=2^{x}$, add:
a) $y=2^{x}-3$
b) $y=2^{(x-2)}$

Example 5: To the graph of $y=\log _{5} x$, add:
a) $y=2 \log _{5} x$
b) $y=\log _{5}(x+1)$

Multiple Transformations

Often, are asked to perform more than one transformation on a graph. Where appropriate, always leave sliding vertically until last.

Example 6: Part of the graph of $y=f(x)$ is shown.
On separate diagrams, sketch:
a) $y=f(-x)+2$
b) $y=-\frac{1}{2} f(x+1)$

Past Paper Example: The diagram shows a sketch of the function $y=f(x)$.
To the diagram, add the graphs of:
a) $y=f(2 x)$
b) $y=1-f(2 x)$.

Trigonometric Graphs

Example 1: Sketch the graphs of $y=\sin x^{\circ}, y=\cos x^{\circ}$ and $y=\tan x^{\circ}$ below.

For trig graphs, how soon the graph repeats itself horizontally is known as the period, and half of the vertical height is known as the amplitude.

Function	Period	Amplitude
$y=\sin x^{\circ}$		
$y=\cos x^{\circ}$		
$y=\tan x^{\circ}$		

$y=a \sin b x^{\circ}+c$			
and			
$y=a \cos b x^{\circ}+c:$	$a=$ amplitude $b=$ waves in 360° $c=$ vertical shift	$\quad y=a \operatorname{tanbx}{ }^{\circ}+c: \quad$	$b=$ "waves" in 180°
:---:			
$c=$ vertical shift			

Compound Angles

A compound angle is one containing two parts, e.g. $(x-60)^{\circ}$. The graphs of trig functions including compound angles are shifted left or right along the x - axis $\left(60^{\circ}\right.$ to the right in the example above).

Example 2: On the axes opposite, sketch:
a) $y=\sin x$
b) $y=a \sin \left(x-\frac{\pi}{4}\right)$
(where $a>0$)

Radians

If we draw a circle and make a sector with an arc of exactly one radius long, then the angle at the centre of the sector is called a radian.

Remember that Circumference $=\pi D=2 \pi r$. This means that there are 2π radians in a full circle.

$$
\begin{gathered}
360^{\circ}=2 \pi \text { radians } \\
180^{\circ}=\pi \text { radians }
\end{gathered}
$$

To convert \boldsymbol{x}° into radians:

Simplify the fraction $\frac{x \pi}{180}$

To convert $\frac{a \pi}{b}$ radians into degrees:
Find the fraction $\frac{a}{b}$ of 180°

Example 3: Convert:
a) 90° to radians
b) 60° to radians
c) 225° to radians
d) $\frac{\pi}{4}$ radians to degrees
e) $\frac{4 \pi}{3}$ radians to degrees
f) $\frac{11 \pi}{6}$ radians to degrees

Example 4: $y=a \sin (b x)+c$ and $y=p \cos (q x)+r$ are shown below. State the values of:
a) a, b and c

b) p, q and r

Example 5: Sketch the following graphs, showing the coordinates of the maximum and minimum points.
a) $y=5 \cos 2 x^{\circ}+3$
$\left\{0 \leq x \leq 360^{\circ}\right\}$
b) $y=-3 \sin 3 x-2$
$\{0 \leq x \leq 2 \pi\}$

Exact Values

Consider the following triangles:

Once we have found the lengths of the missing sides (by Pythagoras' Theorem), the following table of values can be constructed:

A right-angled triangle made by halving an equilateral triangle of side 2 units

A right-angled triangle made by halving an square of side 1 unit

	0°	30°	45°	60°	90°
	0	$\left(\frac{\pi}{6}\right)$	$\left(\frac{\pi}{4}\right)$	$\left(\frac{\pi}{3}\right)$	$\left(\frac{\pi}{2}\right)$
Sin					
Cos					
Tan					

Example 6: State the exact values of:
a) $\sin 150^{\circ}$
b) $\tan 315^{\circ}$
c) $\cos \frac{7 \pi}{6}$

