Revision from National 5

The graph of $y=m x+c$ is a straight line, where m is the gradient and $(0, c)$ is the y-intercept.
Gradient is a measure of the steepness of a line. The gradient of the line joining points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is given by:

$$
m_{A B}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Example 1: Find:

a) the gradient and y-intercept of the line $y=2 x+5$
b) the equation of the line with gradient - 4 and y-intercept (0, -2)
c) the gradient of the line joining $P(-2,4)$ and
d) the gradient of the line $3 y+4 x-11=0$ Q (3, -1)

Equation of a Straight Line: $\boldsymbol{y}-\mathrm{b}=\mathbf{m}(\boldsymbol{x}-\mathrm{a})$

Points $A(a, b)$ and $P(x, y)$ both lie on a straight line.
The gradient of the line $\mathrm{m}=\frac{y-\mathrm{b}}{x-\mathrm{a}}$. Rearranging this gives:

$$
y-b=m(x-a)
$$

NOTE: when you are asked to find the equation of a straight line, it must only have one number term, e.g. y-5 = 2(x +3) should be expanded and simplified to $y=2 x+11$.

Example 2: Find the equations of the lines:
a) through $(4,5)$ with $m=2$
b) joining ($-1,-2$) and (3,10)
c) parallel to the line $x-2 y+4=0$ and passing through the point $(2,-3)$

The General Equation of a Straight Line: $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$

Example 3: Find the equation of the line through $(-5,-1)$ with $m=-\frac{2}{3}$, giving your answer in the form $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$.

Example 4: Sketch the line $5 x-2 y-24=0$ by finding the points where it crosses the x - and y-axes.

The Angle with the x -axis

The gradient of a line can also be described as the angle it makes with the positive direction of the x-axis.

As the y-difference is OPPOSITE the angle and the x difference is ADJACENT to it, we get:

$$
\mathbf{m}_{\mathrm{AB}}=\tan \theta
$$

(where θ is measured ANTI-CLOCKWISE from the x -axis)

Example 5: Find the angle made with the positive direction of the x-axis and the lines:
a) $y=x-1$
b) $y=5-\sqrt{ } 3 x$
c) joining the points $(3,-2)$ and $(7,4)$

Gradients of straight lines can be summarised as follows:
a) lines sloping up from left to right have positive gradients and make acute angles with the positive direction of the x-axis
b) lines sloping down from left to right have negative gradients and make obtuse angles with the positive direction of the x-axis
c) lines with equal gradients are parallel
d) horizontal lines (parallel to the \boldsymbol{x}-axis) have gradient zero and equation $\mathrm{y}=\mathrm{a}$
e) vertical lines (parallel to the \boldsymbol{y}-axis) have gradient undefined and equation $x=b$

Collinearity

If three (or more) points lie on the same line, they are said to be collinear.
Example 6: Prove that the points D $(-1,5), E(0,2)$ and $F(4,-10)$ are collinear.

Perpendicular Lines

If two lines are perpendicular to each other (i.e. they meet at 90°), then:

```
m}\mp@subsup{m}{2}{\prime}=-
```

Example 7: State whether these pairs of lines are perpendicular:
a) $\begin{aligned} & y=2 x-5 \\ & 6 y=10-3 x\end{aligned}$
b) $2 x-3 y=5$
$3 x=2 y+9$

When asked to find the gradient of a line perpendicular to another, follow these steps:

1. Find the gradient of the given line
2. Flip it upside down
3. Change the sign (e.g. negative to positive)

Example 8: Find the gradients of the lines perpendicular to:
a) the line $y=3 x-12$
b) a line with gradient $=-1.5$
c) the line $2 y+5 x=0$

Example 9: Line L has equation $x+4 y+2=0$. Find the equation of the line perpendicular to L which passes through the point $(-2,5)$.

The midpoint of a line lies exactly halfway along it. To find the coordinates of a midpoint, find halfway between the x - and y-coordinates of the points at each end of the line (see diagram).

The x - coordinate of M is halfway between -2 and 8, and its y-coordinate is halfway between 5 and -3 .

In general, if M is the midpoint of $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$:

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

The perpendicular bisector of a line passes through its midpoint at 90°.
Example 10: Find the perpendicular bisector of the line joining $F(-4,2)$ and $G(6,8)$.

To find the equation of a perpendicular bisector:

- Find the gradient of the line joining the given points
- Find the perpendicular gradient (flip and make negative)
- Find the coordinates of the midpoint
- Substitute into $y-b=m(x-a)$

Lines Inside Triangles:

Medians, Altitudes \& Perpendicular Bisectors

In a triangle, a line joining a corner to the midpoint of the opposite side is called a median.

A line through a corner which is perpendicular to the opposite side is called an altitude.

The altitudes are concurrent at the orthocentre

A line at 90° to the midpoint is called a perpendicular bisector.

The perpendicular bisectors are concurrent at the circumcentre

For all triangles, the centroid, orthocentre and circumcentre are collinear.

Example 11: A triangle has vertices $P(0,2), Q(4,4)$ and $R(8,-6)$.
a) Find the equation of the median through P.

To find the equation of a median:

- Find the midpoint of the side opposite the given point
- Find the gradient of the line joining the given point and the midpoint
- Substitute into $y-b=m(x-a)$
b) Find the equation of the altitude through R.

To find the equation of an altitude:

- Find the gradient of the side opposite the given point
- Find the perpendicular gradient (flip and make negative)
- Substitute into $y-b=m(x-a)$

Distance between Two Points

The distance between any two points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and B ($\mathrm{x}_{2}, \mathrm{y}_{2}$) can be found easily by Pythagoras' Theorem.

If d is the distance between A and B, then:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Example 12: Calculate the distance between:
a) $A(-4,4)$ and $B(2,-4)$
b) $X(11,2)$ and $Y(-2,-5)$

Example 13: A is the point $(2,-1), \mathrm{B}$ is $(5,-2)$ and C is $(7,4)$. Show that $B C=2 A B$.

Past Paper Example 1: A triangle has vertices A $(7,0), B(-1,8)$ and $C(-3,-2)$. Find:
a) The equation of the altitude through C.

b) The equation of the median through B.
c) The coordinates of J , the point of intersection between the altitude and median.

Past Paper Example 2:

a) Find the equation of l_{1}, the perpendicular bisector of the line joining $P(3,-3)$ to $Q(-1,9)$.
b) Find the equation of l_{2} which is parallel to PQ and passes through $\mathrm{R}(1,-2)$.
c) Find the point of intersection of l_{1} and l_{2} and hence find the shortest distance between PQ and l_{2}.

