

2018 Mathematics

National 5 - Paper 1

Finalised Marking Instructions

© Scottish Qualifications Authority 2018

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for National 5 Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.

(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt and all marks awarded. $x^2 + 5x + 7 = 9x + 4$ x - 4x + 3 = 0(x - 3)(x - 1) = 0x = 1 or 3

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

You must choose whichever method benefits the candidate, not a combination of both.

- (j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
 - $\frac{15}{12} \text{ must be simplified to } \frac{5}{4} \text{ or } 1\frac{1}{4} \qquad \frac{43}{1} \text{ must be simplified to } 43$ $\frac{15}{0 \cdot 3} \text{ must be simplified to } 50 \qquad \frac{\frac{4}{5}}{3} \text{ must be simplified to } \frac{4}{15}$ $\sqrt{64} \text{ must be simplified to } 8^*$

*The square root of perfect squares up to and including 100 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3} + 2x^{2} + 3x + 2)(2x + 1)$ written as $(x^{3} + 2x^{2} + 3x + 2) \times 2x + 1$ $= 2x^{4} + 5x^{3} + 8x^{2} + 7x + 2$

-2x + 3x + 6x + 7x +

gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Detailed marking instructions for each question

Question		on	Generic scheme	Illustrative scheme	Max mark	
1.		• ¹ identify common denominator		• $^{1} 2{15} + {15}$ or ${15} + {15}$	2	
			•² answer	• ² $3\frac{2}{15}$ or $\frac{47}{15}$		
Note	s:					
1.	. Cor	rect a	answer without working award 0/2			
2.	2. Do not penalise incorrect conversion of $\frac{47}{15}$ to a mixed number					
Com	Commonly Observed Responses:					

Question		on	Generic scheme	Illustrative scheme	Max mark
2.		• ¹ start expansion		• $3x^2 - 3x + x - 1$ or $2x^2 - 10$	3
			• ² complete expansion	• ² $3x^2 - 3x + x - 1 + 2x^2 - 10$	
			• ³ collect like terms (see Note 2)	• $5x^2 - 2x - 11$	
Note	s:				
1.	Cor	rect a	nswer without working award 3/3		
2.	2. Terms in the expression to be simplified must include a constant and two different powers of x eg (a) $3x^3 - 3x + x - 1 + 2x^2 - 10 = 3x^3 + 2x^2 - 2x - 11$ award $2/3 \checkmark x \checkmark$ (b) $3(x-1) + 1(x-1) + 2(x^2-5) = 3x - 3 + x - 1 + 2x^2 - 10 = 2x^2 + 4x - 14$ award $2/3 \checkmark x \checkmark$ (c) $3x^2 + 1 - 1 + 2x^2 - 10 = 5x^2 - 10$ award $1/3 \checkmark x \times$				
3.	For	subse	equent incorrect working, the final mar	k is not available	
Comi	monly	v Obse	erved Responses:		

Question		on	Generic scheme	Illustrative scheme	Max mark	
3.			• ¹ evidence of scaling (match <i>x</i> or <i>y</i> coefficients)	• 1 eg $\frac{8x + 10y = -6}{30x - 10y = 25}$	3	
			• ² follow a valid strategy through to produce values for x and y	• ² values for x and y		
			• ³ calculate correct values for x and y	• $x = 0.5, y = -1$		
Notes: 1. Correct answer without working award 0/3 2. Answer obtained by guess and check award 0/3						
Com	Commonly Observed Responses:					

Question		Generic scheme	Illustrative scheme	Max mark
4.		• ¹ evidence of subtraction	• ¹ eg $\begin{pmatrix} 6 \\ -4 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix}$	2
		• ² all components correct	$\bullet^2 \begin{pmatrix} 5 \\ -9 \\ 2 \end{pmatrix}$	
Note: 1.	s: Correct a	answer without working award 2/2		
2.	The maxi (a) brack (b) final	imum mark available is 1/2 where ets are omitted from the final answer answer is given in coordinate form		
2.	. Accept o	ne correct component for evidence of s	ubtraction	
	$eg \begin{pmatrix} 5 \\ \end{pmatrix} o$	or $\begin{pmatrix} -9 \\ 2 \end{pmatrix}$ or $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ award 1/2 $\checkmark \times$		
Comr	monly Obse	erved Responses:		
1.	(a) $\begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix}$	$+\begin{pmatrix}5\\-9\\2\end{pmatrix}=\begin{pmatrix}6\\-4\\3\end{pmatrix}$	award 2/2	
	$(b) \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix}$	$+\begin{pmatrix}5\\-9\\2\end{pmatrix}=\begin{pmatrix}6\\-4\\3\end{pmatrix} \rightarrow \mathbf{v}=\begin{pmatrix}6\\-4\\3\end{pmatrix}$	award 1/2	
2.	(-5) 9 -2)	$\begin{bmatrix} u - (u + v) \end{bmatrix}$ no working necessary	award 1/2 ×√	
3.	$\begin{pmatrix} 7\\1\\4 \end{pmatrix}$	$\left[u + (u + v) ight]$ no working necessary	award 1/2 ×√	
4.	(5,-9	9,2) or 5,-9,2	award 1/2 √×	

Question		n	Generic scheme	Illustrative scheme	Max mark	
5.			• ¹ correct factorisation	• $(x-3)(x-8)$	2	
			• ² solve for x	• ² (x=)3,(x=)8		
Note	s:			·		
1.	Cori	rect a	nswer without working award 0/2			
2.	For	an an	swer obtained by guess and check awa	rd 0/2		
3.	 3. BEWARE •² is only available if 3,8 are clearly stated as solutions to (x-3)(x-8)[=0] and not as factors of 24 					
	● ¹ 1	1±√2 2	5			
	• ² 3	,8				
Com	Commonly Observed Responses:					
1.	1. $(x+3)(x+8) \rightarrow 3,8$ award 0/2					
2.	(<i>x</i> +	4)(<i>x</i> –	$-6) \rightarrow -4,6$ award 1/2 × \checkmark			

Question		on	Generic scheme		Illustrative scheme	Max mark
6.			• ¹ state the value of a		• $^{1} a = 5$	2
			• ² state the value of b		• ² $b = 4$	
Note	s:					
Com	monly	/ Obse	erved Responses:			
1.	(a)	y = 50	$\cos 4x$	award 2/2		
	(b)	5,4		award 1/2		
2.	(a)	a = 4,	$b = 5$ or $y = 4\cos 5x$	award 1/2		
	(b)	4,5	·	award 0/2		
3.	(a)	y = 5c	$\cos 2x$	award 1/2		
	(b)	5,2		award 0/2		

Question		on	Generic scheme	Illustrative scheme	Max mark
7.	(a)		Method 1: $y-b=m(x-a)$	Method 1	3
			•1 calculate gradient	• $\frac{6}{4}$ or equivalent	
			• ² substitute gradient and a point into $y-b=m(x-a)$	• ² eg $y-20 = \frac{6}{4}(x-12)$	
			• ³ state equation in simplest form in terms of P and d	• ³ $P = \frac{3}{2}d + 2$ or equivalent	
			Method 2: $y = mx + c$	Method 2	
			•1 calculate gradient	• $\frac{6}{4}$ or equivalent	
			• ² substitute gradient and a point into $y = mx + c$	• ² eg $20 = \frac{6}{4} \times 12 + c$	
			• ³ state equation in simplest form in terms of P and d	• ³ $P = \frac{3}{2}d + 2$ or equivalent	

	Question	Generic scheme	Illustrative scheme	Max mark					
No	Notes: 1. Correct answer without working award 0/3								
	2. Gradient	need not be simplified for the award of	• • ²						
	3. Where $\frac{6}{2}$	is simplified incorrectly • ² is still avail	able						
	eg m	$=\frac{6}{4} = \frac{2}{3} \to y - 20 = \frac{2}{3}(x - 12) \to P = \frac{2}{3}d$	+12 award 2/3 √√×						
	4. • ³ is not	available where the calculated gradient	is an integer						
	5. • ³ is not a	available where a decimal approximati	on is used for the gradient						
	eg <i>m</i> =	$=\frac{4}{6}=0.67 \rightarrow y-20=0.67(x-12) \rightarrow P$	$=$ 0.67 d +11.96 award 1/3 × \checkmark ×						
	6. • ³ is not a	available for invalid subsequent working	3						
	eg P	$=\frac{3}{2}d+2 \rightarrow 2P=3d+2$	award 2/3 √√×						
Co	ommonly Obse	erved Responses:							
W	orking must b כ	e shown.							
	1. $y = \frac{3}{2}x + $	2	award 2/3 √√×						
	2. (a) $P = \frac{3}{2}$	$d + 2 \rightarrow 2P = 3d + 4$	award 3/3						
	(b) $P = \frac{6}{4}$	$d + 2 \rightarrow 4P = 6d + 8$	award 2/3 √√×						
	3. $m = \frac{6}{4} = 0$	$0.67 \rightarrow y-20 = 0.67(x-12) \rightarrow P = 0.67(x-12)$	$7d + 11.96$ award $2/3 \checkmark \checkmark \times$						
	4. $m = \frac{6}{4} = \frac{1}{4}$	$\frac{3}{4} = 0.75 \rightarrow y - 20 = 0.75(x - 12) \rightarrow P =$	$0.75d + 11$ award $2/3 \checkmark \checkmark \times$						
	5. $m = \frac{4}{6} = \frac{4}{3}$	$\frac{2}{3} \rightarrow y - 20 = \frac{2}{3}(x - 12) \rightarrow P = \frac{2}{3}d + 12$	award 2/3 ×√√						
	6. $m = \frac{3}{4} = 0$	$0.75 \rightarrow y - 20 = 0.75(x - 12) \rightarrow P = 0.75$	award 2/3 $\times \sqrt{2}$						

Question		n	Generic scheme	Illustrative scheme	Max mark			
	(b)		•1 calculate cost	• ¹ (£) 9.50	1			
Note	Notes: 1. Correct answer without working award 1/1							
2. 3.	2. Do not penalise omission of £ 3. Do not accept 9.5 or $\frac{19}{2}$							
4.	4. Follow through mark from part (a) is only available if 5 is multiplied or divided by a non-unitary fraction (or decimal equivalent) followed by an addition or subtraction							
Com	monly	⁷ Obse	erved Responses:					

Question		on	Generic scheme		Illustrative scheme	Max mark
8.			•1 find discriminant		•1 -24	2
			• ² state nature of roots		• ² no real roots	
Note 1. 2. 3. 4.	Notes: 1. Correct answer without working award 0/2 2. $16-40 < 0 \rightarrow$ no real roots, award 2/2 3. Do not accept 'no roots', 'no real (or) distinct roots', 'no real (and) distinct roots' 4. Expected answer(s) for the award of $*^2$, when (a) $b^2 - 4ac > 0$: 'two real (and) distinct roots' (b) $b^2 - 4ac = 0$: 'one repeated real root' or 'two equal real roots'					
Com	monly	0bse	rved Responses:			
1. —	1. $\frac{-4 \pm \sqrt{16} - 40}{4} = \frac{-4 \pm \sqrt{-24}}{4}$ award $1/2 \checkmark \times$					
2. 🗸	16-40	$\overline{0} = \sqrt{-1}$	-24 award 1/2 √×			

Question		ı	Generic scheme	Illustrative scheme	Max mark		
9.			 •¹ calculate the size of an interior angle of the decagon or angle JKL •² calculate the size of angle KJL 	 interior angle = 72+72 or JKL = 36 127 	2		
Note 1. 2.	Notes: 1. Correct answer without working award 2/2 2. Degree signs are not required						

- 3. Full marks may be awarded for information marked on the diagram
- 4. For a final answer of 36 which is not named or shown at JKL award 0/2
- 5. Where JKL has been calculated incorrectly •² is only available where there is **clear evidence** that JKL has been calculated by using the interior angle or exterior angle of the decagon

Commonly Observed Responses:

Q	Question		Generic scheme	Illustrative scheme	Max mark
10.			• ¹ correct substitution into cosine rule	• 1 10 ² + 8 ² - 2×10×8× $\frac{1}{8}$	3
			• ² calculate XY ²	• ² 144	
			• ³ calculate XY	• ³ 12 (cm)	
Note 1. 2. 3.	s: Corre For 1 where • ³ is a (a) [• (b)	ect an $0^2 + 8$ e cos availa expre eg $\sqrt{2}$ a is no calcu eg $\sqrt{2}$	swer without working award 0/3 $b^2 - 2 \times 10 \times 8 \times \cos \frac{1}{8} = 164 - 160 \times \cos \frac{1}{8}$ is scored out in each line of working ble for $essing \sqrt{x}$ as a surd in its simplest for $10^2 + 8^2 = \sqrt{164} = 2\sqrt{41}$ award 1/3 ot available where \sqrt{x} cannot be sim lating \sqrt{x} where x is a perfect square so $10^2 - 8^2 = \sqrt{36} = 6$ award 0/3	$\frac{1}{3} = 144 \rightarrow 12$ award 3/3 m (*** \checkmark plified] greater than 100	
Com	monly	Obse	erved Responses:		
1.	10 ² +	8 ² – 2	$2 \times 10 \times 8 \times \cos \frac{1}{8} = 12$ award 2/3	×√√	
2.	10 ² +	$-8^2 - 2$	$2 \times 10 \times 8 \times \cos \frac{1}{8}$ award 0/3		

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark		
11.			 ¹ express as equivalent fraction with rational denominator 	• $1 \frac{9\sqrt{6}}{6}$	2		
			• ² express in simplest form	$\bullet^2 \frac{3\sqrt{6}}{2}$			
Note 1.	s: Corre	ect an	swer without working award 0/2				
2.	2. Accept 1.5√6						
3.	For s	ubseq	uent incorrect working, the final mark	is not available			

eg
$$\frac{9\sqrt{6}}{6} = \frac{3\sqrt{6}}{2} = 3\sqrt{3}$$
 award $1/2 \checkmark \times$

Commonly Observed Responses:

Question		on	Generic scheme	Illustrative scheme	Max mark		
12.			•1 state value	• ¹ -0·5	1		
Note	es:						
Com	Commonly Observed Responses:						

Q	Question Generic scheme				c scher	ne	Illustrative scheme	Max mark
13.		•	• ¹ state coordinates of B			• ¹ (4, 8, 5)	2	
			² state co	ordinate	es of C		• ² (6, 8, 0)	
Note	s:							
1.	The ma (a) bra (b) ans	aximu ckets wers	m mark a are omit are given	ivailable ted (ur in comp	is 1/2 Iless al Donent	where ready penalis form (unles	ed in Q4) s already penalised in Q4)	
2.	(a) For	(4, 8	3, 5) and ((6, 8, 0)	a	ward 2/2		
	(b) For	[·] C(4,	8, 5) and	B(6, 8,	0) a	ward 1/2		
3.	For eg • ² is av eg (2,	(5, 4, ailab 8, 5)	8) and (0 le for ans and (4, 8	, 6, 8) wers of , 0)	[repea the for	ted error] aw m B (x, y, z)	ard 1/2 ,C(x+2, y, z-5)	
Com	monly C	Obser	ved Resp	onses:				
1.	4,8,5	and	6,8,0			award 1/2 ×	\checkmark	
	(awar	rd 2/2	2 if omissi	on of br	ackets	has already b	een penalised in Q4)	
2.	$ \begin{pmatrix} 4 \\ 8 \\ 5 \end{pmatrix} $ (awar	and rd 2/2	$\begin{pmatrix} 6\\8\\0 \end{pmatrix}$ or 2 if use of 	4 8 and 5 coordin	6 8 0 ates in	award 1/2 ×	✓ ponents has already been penalised in (Q4)
3.	$ \begin{pmatrix} 5 \\ 8 \\ 4 \end{pmatrix} $	and	$\begin{pmatrix} 6\\8\\0 \end{pmatrix}$			award 0/2		- /

Question		on	Generic scheme	Illustrative scheme	Max mark
14.			• ¹ subtract <i>h</i>	• ¹ $y-h=g\sqrt{x}$	3
			• ² divide by g	• ² $\sqrt{x} = \frac{y-h}{g}$	
			• ³ square	• ³ $x = \left(\frac{y-h}{g}\right)^2$	
Note 1.	s: Corre	ect an	swer without working award 1/3		
2.	For s	ubseq	uent incorrect working, the final mark	is not available	
Com Worl	monly king m	v Obse nust b	erved Responses: e shown.		
1. $x = \left(\frac{y}{g} - \frac{h}{g}\right)^2$ award 3/3					
2.	$x = \frac{y}{x}$	$\frac{w-h}{g}$	award 2/3 √√×		

Q	Question Generic scheme			Illustrative scheme	Max mark	
15.			•1 start process	• $\frac{4}{9}$ or p^8	2	
			• ² complete process	$e^{2} \frac{4}{9} p^{8}$		
Note	s:					
1.	. For a	corre	ect answer without working award 2/2			
2.	. For s	ubseq	uent incorrect working, the final mark	is not available		
3.	. BEW	ARE	: For $\frac{2}{3}p^4 + \frac{2}{3}p^4 = \frac{4}{3}p^8$ award 0/2			
4	. Awar	⁻d ∙¹ f	for an incorrect expansion leading to $\frac{4}{9}$	+ or+ p^8		
	eg	$\frac{2}{3}p^4$	$\left(\frac{2}{3}p^{4}\right) = \frac{4}{9} + \frac{2}{3}p^{4} + \frac{2}{3}p^{4} + p^{8} = \frac{4}{9} + \frac{4}{3}p^{4}$	$p^4 + p^8$ award 1/2 $\checkmark \times$		
Com	Commonly Observed Responses:					

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
16.			• ¹ identify roots	• ¹ -4 AND 6	3
			• ² identify turning point OR y-intercept	• ² (1, -25) OR -24	
			• ³ identify the turning point AND the y-intercept and sketch a consistently annotated parabola	 •³ (1, −25) AND −24 and consistently annotated parabola (see Note 1). 	
				-4 0 6 x -24 (1,-25)	
Note 1.	s: ● ³ is consi	only a istentl	vailable where the roots, turning point y annotated on the sketch	AND <i>y</i> -intercept are clearly marked an	d
2.	Acce (–24	pt cor , 0) as	rectly calculated roots and/or y-interc sevidence for the award of \bullet^3 (treat as	ept annotated as (0, –4), (0, 6) and bad form)	
3.	eg ro	not av pots =	ailable if graph is not a parabola -6 and $4 \rightarrow (-1, -21)$ or -24 award 1.	/3 ×√×	
Com	monly	0bse	erved Responses:		

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
17.			Method 1	Method 1	3
			• ¹ start substitution into formula	• $\frac{1}{3} \times 6^2 \times h$ or $\frac{1}{3}Ah = 138$	
			• ² complete substitution into formula	$\bullet^2 \frac{1}{3} \times 6^2 \times h = 138$	
			• ³ calculate height	• ³ 11·5 (cm)	
			Method 2	Method 2	
			• ¹ change subject to h	• ¹ $\frac{3V}{A}$ or $\frac{V}{\frac{1}{3}A}$	
			• ² correct substitution into formula	• ² $\frac{3 \times 138}{6 \times 6}$ or $\frac{138}{\frac{1}{3} \times 6 \times 6}$	
			• ³ calculate height	• ³ 11·5 (cm)	

Question	Generic scheme	Illustrative scheme	Max mark
Notes: 1. For a corre	ect answer without working award 0/3		
2. For an ans	wer obtained by guess and check awa	rd 0/3	
3. Accept $\frac{21}{2}$	$\frac{3}{2}$ or $11\frac{1}{2}$		
4. For subsect eg $\frac{23}{2} = 11$	quent incorrect working, the final mar 1·1	< is not available	
5. Calculation	n must involve division by a number g	eater than 10 for the award of \bullet^3	
Commonly Obse Working must b	erved Responses: e shown.		
1. (a) $\frac{1}{3} \times 6^2 \times$	$h = 138 \rightarrow \frac{1}{3} \times 12 \times h = 138 \rightarrow 4h = 138$	$\rightarrow h = 34.5$ award 2/3 $\checkmark \checkmark \times$	
(b) $\frac{1}{3} \times 12 \times$	$h = 138 \rightarrow 4h = 138 \rightarrow h = 34.5$	award 1/3 √××	
2. $\frac{1}{3} \times 18 \times$	$h = 138 \rightarrow 6h = 138 \rightarrow h = 23$ [A	$=\frac{1}{2}\times 6^2$] award $1/3 \checkmark \times \times$	
3. $\frac{1}{3} \times 24 \times$	$h = 138 \rightarrow 8h = 138 \rightarrow h = 17.25$ [A	a = 4×6] award $1/3 \checkmark \times \times$	
4. (a) $V = \frac{1}{3}$	$Ah \rightarrow \frac{1}{3} \times 6 \times h = 138 \rightarrow 2h = 138 \rightarrow h =$	69 award 1/3 √××	
(b) $h = \frac{3V}{A}$	$h \to h = \frac{3 \times 138}{6} \to h = 69$	award 1/3 √××	
(c) $\frac{1}{3} \times 6 \times 1$	$h = 138 \rightarrow 2h = 138 \rightarrow h = 69$	award 0/3	

Q	Question Generic scheme			ric scheme		Illustrative scheme	Max mark
18.			• ¹ correct subst	itution for $\tan x$		• $\sin x \cos x \frac{\sin x}{\cos x}$	2
			• ² express in sin	nplest form		• ² $\sin^2 x$	
Note	s:						
1.	For s	$\sin^2 x$	without working	award 0/2			
2.	Degr	ee sig	ns are not require	ed			
3.	Acce	pt (si	$(n x)^2$ but not sin.	x^2			
4.	•1 is	not a	vailable if there a	are no variables			
	eg si	n cos-	$\frac{\sin}{\cos} = \sin^2$		awa	ard 1/2 ×√	
5.	• 1 is	not a	vailable if candid	ate simply states	tan :	$x = \frac{\sin x}{\cos x}$ then proceeds no further	
6.	•² is	not a	vailable if there i	s invalid subsequ	ent w	vorking	
	eg (a) sin	$x\cos x \frac{\sin x}{\cos x} = \sin x$	$x^2 x = 1 - \cos x$	awa	ard 1/2 √×	
	(b) sin	$x\cos x \frac{\sin x}{\cos x} = \sin x$	$x^2 x = 1 - \cos^2 x$	awa	ard 2/2	
7.	Alter	native	e acceptable stra	tegy:			
	•1	$\left(\frac{o}{h}\right)\left(\frac{a}{h}\right)$	$\left(\frac{o}{a}\right)$				
	• ² $\frac{o}{h}$	$\frac{2}{2} = \sin \theta$	$n^2 x$		awa	ard 2/2	
<u>(</u>	merele	/ OL	mind Deeperson				
Com	moniy	/ UDSE	erved Responses:				
1.	$\sin x$	$\cos x$	$\frac{\sin x}{\cos x} = \sin x^2$	award 1/2 √×			
2.	$1 \times \frac{s}{c}$	$\frac{\ln x}{\cos x} =$	tan x	award 1/2 √×			
3.	sin <i>x</i>	$\cos x$	$\frac{\cos x}{\sin x} = \cos^2 x$	award 1/2 ×√			

Question				Generic scheme		Illustrative scheme	Max mark
19.	(a)	(i)	• ¹ correct bracket with square			$(x-3)^2$	2
			• ² comp	olete process	• ²	$(x-3)^2-90$	
Note	s: . Corr	ect a	nswer wi	thout working award 2/2			
2	. If th	ie soli	ition to (a)(i) only appears in (a)(ii) the	n both	marks are available	
Com No w	monly vorkin	obse g nec	erved Re essary:	sponses:			
1.	Awar	d 2/2	for	(a) $(x-3)^2 + (-90)$ or $(x-3)$	² + -90		
				(b) $(x-3)(x-3)-90$			
2.	Awar	d 1/2	×√ for	(a) $(x-3)-90$			
				(b) $(x^2 - 3) - 90$			
				(c) $(x^2 - 3)^2 - 90$			
				(d) $(x-3x)^2 - 90$			
				(e) $(x-6)^2 - 117$			
3.	(a) ($(x-6)^2$	² –117	award 1/2 ×√			
	(b) ($(x-6)^2$	² – 90	award 0/2			
					I		
		(ii)	● ¹ state symn	equation of axis of netry	• ¹	<i>x</i> = 3	1
Note	s:				1		1
1	. For	3 or	axis of s	ymmetry = 3 award $0/1$			
2	. Ans	wer n	nust be c	consistent with answer to 19(a)	(i) [unl	ess no answer given to 19(a)(i)]	
Com	monly	, Obse	erved Re	sponses:			

Q	uestic	n	Generic scheme	Illustrative scheme	Max mark		
19.	(b)		Ans: $d = 3, e = 10$		4		
			Method 1	Method 1			
			• ¹ equate complete square form to zero	• $(x-3)^2 - 90 = 0$			
			• ² start to solve	$\bullet^2 x-3=\pm\sqrt{90}$			
			• ³ solve equation	$\bullet^3 \ x = 3 \pm \sqrt{90}$			
			• ⁴ complete process	• ⁴ $d = 3, e = 10$ or $3 \pm 3\sqrt{10}$			
			Method 2	Method 2			
			• ¹ correct substitution into quadratic formula	$\bullet^{1} \frac{6 \pm \sqrt{\left(-6\right)^{2} - 4 \times 1 \times \left(-81\right)}}{2 \times 1}$			
			•² evaluate discriminant	• ² 360 (stated or implied by • ³)			
			 ³ express discriminant in simplest form 	• ³ 6√10			
			• ⁴ complete process	• ⁴ $d = 3, e = 10 \text{ or } 3 \pm 3\sqrt{10}$			
Note	s:	oct an	swor without working sword 0/4				
Ζ.	2. Where a, b and c are all positive \bullet^2 is not available						
3.	3. Where $b^2 - 4ac$ is calculated incorrectly, \bullet^3 and \bullet^4 are only available if $b^2 - 4ac > 0$ (See CORs 2 - 5)						
4.	. ● ⁴ is o	only a	vailable where a correct simplification	of $\sqrt{\text{discriminant}}$ leads to a			
	final	answ	er of the form $d \pm d\sqrt{e}$ (See COR 6)				

Commonly Observed Responses: Working must be shown.

1.
$$\frac{6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times \left(-81\right)}}{2 \times 1} \rightarrow \frac{6 \pm \sqrt{360}}{2} \rightarrow \frac{6 \pm 3\sqrt{40}}{2} \rightarrow 3 \pm 1.5\sqrt{40} \qquad \text{award } 2/4 \checkmark \checkmark \times 10^{-10}$$

2.
$$\frac{6 \pm \sqrt{(-6)^2 - 4 \times 1 \times (-81)}}{2 \times 1} \rightarrow \frac{6 \pm \sqrt{-288}}{2} \rightarrow \frac{6 \pm 12\sqrt{2}}{2} \rightarrow 3 \pm 6\sqrt{2}$$
 award 1/4 $\checkmark \times \times \times$

(**BEWARE:** candidate may get $\sqrt{-288}$ then change it to $\sqrt{288}$)

3.
$$\frac{6\pm\sqrt{\left(-6\right)^2-4\times1\times\left(-81\right)}}{2\times1} \rightarrow \frac{6\pm\sqrt{288}}{2} \rightarrow \frac{6\pm12\sqrt{2}}{2} \rightarrow 3\pm6\sqrt{2} \qquad \text{award } 2/4 \checkmark \times \checkmark \times$$

4.
$$\frac{6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times 81}}{2 \times 1} \rightarrow \frac{6 \pm \sqrt{-288}}{2} \rightarrow \frac{6 \pm 12\sqrt{2}}{2} \rightarrow 3 \pm 6\sqrt{2} \qquad \text{award } 1/4 \times \sqrt{\times \times}$$

(BEWARE: candidate may get $\sqrt{-288}$ then change it to $\sqrt{288}$)

5.
$$\frac{-6 \pm \sqrt{6^2 - 4 \times 1 \times 81}}{2 \times 1} \rightarrow \frac{-6 \pm \sqrt{-288}}{2} \rightarrow \frac{-6 \pm 12\sqrt{2}}{2} \rightarrow -3 \pm 6\sqrt{2}$$
 award 0/4

(**BEWARE:** candidate may get $\sqrt{-288}$ then change it to $\sqrt{288}$)

6.
$$\frac{6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times 81}}{2 \times 1} \rightarrow \frac{6 \pm \sqrt{288}}{2} \rightarrow \frac{6 \pm 12\sqrt{2}}{2} \rightarrow 3 \pm 6\sqrt{2} \qquad \text{award } 1/4 \times x \sqrt{x}$$

7.
$$\frac{6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times \left(-81\right)}}{2 \times 1} \rightarrow \frac{6 \pm \sqrt{288}}{2} \rightarrow \frac{6 \pm 6\sqrt{8}}{2} \rightarrow 3 \pm 3\sqrt{8} \qquad \text{award } 2/4 \checkmark \times \checkmark$$

8.
$$6 \pm \sqrt{\left(-6\right)^2 - 4 \times 1 \times \left(-81\right)} \rightarrow 6 \pm \sqrt{360} \rightarrow 6 \pm 6\sqrt{10} \qquad \text{award } 2/4 \times \checkmark \checkmark$$

[END OF MARKING INSTRUCTIONS]