

## CNHS Higher HW Solutions Week 8 [29/03/19] Qs 106 - 120

106. At any point (x, y) on a curve,  $\frac{dy}{dx} = 3x^2 + 4x$ . Given that the curve passes through the point (-1, 5), express y in terms of x.

$$\mathbf{y} = \mathbf{x}^3 + 2\mathbf{x}^2 + 4$$

**107.** Evaluate  $\int_{1}^{2} (x^{3} - 2x) dx$ .  $\frac{3}{4}$ 

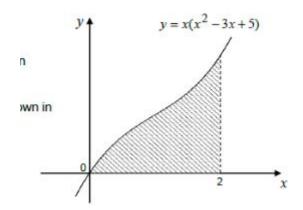
**108.** For a curve y = f(x), it is known that  $\frac{dy}{dx} = 4x^3 - 3x^2 - 1$  and the curve passes through the point (2, 0). Find the equation of the curve.

(a) 
$$y = x^4 - x^3 - x - 6$$



110. (a) Given 
$$f(x) = \frac{6x^5 - 1}{x^2}$$
, find  $f'(x)$ .  
(b) Find  $\int (2x+3)(2x-5)dx$ .  
(a)  $\mathbf{18x^2} + \frac{2}{x^3}$  (b)  $\frac{4x^3}{3} - \mathbf{2x^2} - \mathbf{15x} + \mathbf{c}$ 

111. The curve with equation  $y = x(x^2 - 3x + 5)$  is shown below.



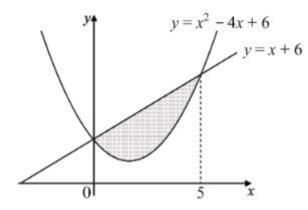
Calculate the shaded area.

6 units<sup>2</sup>

112. Given that 
$$\int_{1}^{a} (2x+5)dx = 18$$
, where  $a > 1$ , find the value of  $a$ .

**a** = 3  
**113.** Find: (a) 
$$\int \left( 6\sqrt{x} + \frac{1}{x^3} \right) dx$$
 (b)  $\int \frac{4x^3 - 1}{x^2} dx$   
(a)  $4x^{\frac{3}{2}} - \frac{1}{2x^2} + c$  (b)  $2x^2 + \frac{1}{x} + c$ 

114. The line with equation y = x + 6 and the curve with equation  $y = x^2 - 4x + 6$  intersect where x = 0 and x = 5, as shown in the diagram below.



Calculate the shaded area.

$$\int_0^5 5x - x^2 \, dx = \left(\frac{5 \cdot 5^2}{2} - \frac{5^3}{3}\right) - (0) = 20 \, \frac{5}{6} \, units^2$$

**115.** A curve with equation y = f(x) is such that  $\frac{dy}{dx} = 3x^2 - x$ .

If the curve passes through the point (2, 11), express y in terms of x.

$$y = x^3 - \frac{1}{2}x^2 + 5$$

116. (a) Given that  $\int_{0}^{p} (6x^{2} + 6x - 5)dx = 6$ , where p > 0, show that p satisfies the equation  $2p^{3} + 3p^{2} - 5p - 6 = 0$ .

(b) Solve the equation to find the value of *p*.

(a) proof (integrate and substitute p and 0) (b)  $p = \frac{3}{2}$ 

| - | 117.                     | Expand and simplify:                    | (a)       | С | $\cos\left(x+\frac{\pi}{6}\right)$ | (b) | $\sin\!\left(x + \frac{\pi}{2}\right)$ |
|---|--------------------------|-----------------------------------------|-----------|---|------------------------------------|-----|----------------------------------------|
|   | (a) $\frac{\sqrt{3}}{2}$ | $\frac{3}{2}\cos x - \frac{1}{2}\sin x$ | (b) cos x |   |                                    |     |                                        |

**118.** The diagram shows a right-angled triangle. Find the exact value of  $\cos 2x$ .

| $\frac{4}{5}$     |                             |     |           |     |           |  |
|-------------------|-----------------------------|-----|-----------|-----|-----------|--|
| 119.              | The acute angle A is such t |     |           |     |           |  |
|                   | Find the exact value of :   | (a) | $\sin 2A$ | (b) | $\cos 2A$ |  |
| (a) $\frac{4}{5}$ | (b) $\frac{-3}{5}$          |     |           |     |           |  |

**120.** Solve the equation  $\sin 2x^\circ - \sin x^\circ = 0$  in the interval  $0 \le x \le 360$ .

[*Hint*: start by replacing  $\sin 2x^{\circ}$  with a double angle formula]

 $\mathbf{x} = \mathbf{0}^0 \ \mathbf{60}^0 \ \mathbf{180}^0 \ \mathbf{300}^0 \ \mathbf{360}^0$