

CNHS Higher HW Solutions

> Week 7 [22/03/19]
> Qs $91-105$
91. Find the two values of k for which the quadratic equation $x^{2}+(k-3) x+k=0$ has equal roots.

$$
(\mathrm{k}-3)^{2}-4 \mathrm{x} 1 \mathrm{xk}=0 \ldots \mathrm{k}=-\mathbf{1 0}, \mathbf{k}=\mathbf{1}
$$

92. Find the quotient and remainder when $2 x^{4}-3 x^{3}-3 x+1$ is divided by $(x-2)$.
```
r=3
```

93. $f(x)=6 x^{3}-5 x^{2}-17 x+6$
(a) Show that $(x-2)$ is a factor of $f(x)$.
(b) Hence express $f(x)$ in its fully factorised form.
$(x-2)(2 x+3)(3 x-1)$
94. Factorise fully $f(x)=x^{3}-4 x^{2}-7 x+10$.
$(x-5)(x-1)(x+2)$
95. Given that $(x+1)$ is a factor of $2 x^{3}+3 x^{2}+k x-6$, find the value of k.
```
k=-5
```

96. Show that $(x-2)$ is a factor of $f(x)=x^{3}-6 x^{2}+3 x+10$ and hence factorise $f(x)$ fully.
$(x-2)(x-5)(x+1)$
97. A parabola crosses the x-axis at the points $(2,0)$ and $(5,0)$.

Given that the parabola also passes through the point (4, 4), find the equation of the parabola.
[You may find it helpful to draw a sketch of the parabola.]
$y=-2(x-2)(x-5)$
98. (a) Show that $x=1$ is a root of $x^{3}+8 x^{2}+11 x-20=0$.
(b) Hence factorise $x^{3}+8 x^{2}+11 x-20$ fully and solve the equation $x^{3}+8 x^{2}+11 x-20=0$.

$$
x=-5, x=-4, x=1
$$

99. Find the quotient and remainder when $3 x^{4}-4 x^{2}+2 x-3$ is divided by $(x-2)$.

$$
\left(3 x^{3}+6 x^{2}+8 x+18\right) r 33
$$

100. $f(x)=2 x^{3}+p x^{2}+q x+4$
(a) Given that $(x-2)$ is a factor of $f(x)$, write down an equation in p and q.
(b) The remainder when $f(x)$ is divided by $(x+1)$ is 9 .

Write down a second equation in p and q.
(c) Find the values of p and q.
(a) $4 p+2 q=-20$
(b) $\mathbf{p}-\mathbf{q}=7$
(c) $\mathbf{p}=\mathbf{- 1}, \mathbf{q}=\mathbf{- 8}$
101. For what value of k does the quadratic equation $k x^{2}+(2 k+1) x+k=0$ have equal roots?
[Hint: remember that $b^{2}-4 a c=0$ for equal roots]

$$
k=\frac{-1}{4}
$$

102. The graph of a cubic function is shown below.

Find the equation of the graph.

$$
y=k(x-a)(x-b)(x-c) \ldots y=-2(x-1)^{2}(x-5)
$$

103. Solve each quadratic inequality by first sketching the graph of the quadratic.
(a) $x^{2}-2 x-15<0$
(b) $6-x-x^{2}<0$
(a) $-3<x<5$
(b) $\mathrm{x}<-3, \mathrm{x}>2$
104. For the cubic polynomial $f(x)=6 x^{3}+7 x^{2}+a x+b$,

- $(x+1)$ is a factor of $f(x)$
- the remainder when $f(x)$ is divided by $(x-2)$ is 72 .

Find the values of a and b.

$$
a=-25 \quad b=-26
$$

105. Find: (a) $\int\left(6 x^{2}+2 x+3\right) d x$
(b) $\int \frac{8}{x^{3}} d x$
(c) $\int 6 \sqrt{x} d x$
(a) $2 x^{3}+x^{2}+3 x+c$
(b) $\frac{-4}{x^{2}}+c$
(c) $4 x^{\frac{3}{2}}+c$
