

CNHS Higher HW Solutions

 Week 5 [08/03/19]Qs 61-75
61. Find $f^{\prime}(x)$ when:
(a) $\quad f(x)=x(x-1)^{2}$
(b) $\quad f(x)=\frac{2 x^{6}-5}{x^{2}}$
(a) $f(x)=x\left(x^{2}-2 x+1\right)=x^{3}-2 x^{2}+x \ldots f^{\prime}(x)=\mathbf{3} x^{2}-4 x+1$
(b) $f(x)=2 x^{4}-5 x^{-2} \ldots f^{\prime}(x)=\mathbf{8} \mathbf{x}^{3}+10 x^{-3}$
62. A parabola has equation $y=\frac{1}{2} x^{2}-8 x+34$.

The gradient of the tangent to the parabola at the point P is 4 .
Find the coordinates of P .

$$
\begin{align*}
& \mathrm{m}=\mathrm{y}^{\prime}=\mathrm{x}-8=4 \ldots \mathrm{x}=12 \\
& \mathrm{y}=\frac{1}{2} 12^{2}-8.12+34=72-96+34=10 \tag{12,10}
\end{align*}
$$

63. Find the coordinates of the stationary points of the curve $y=x^{3}-3 x^{2}+4$ and justify their nature.

$$
\begin{array}{clr}
y^{\prime}=3 x^{2}-6 x=0 & @ x=0, y=0^{3}-3 x 0^{2}+4=4 & \text { nature table } / 2^{\text {nd }} \text { derivative } \\
3 x(x-2)=0 & @ x=2, y=2^{3}-3(2)^{2}+4=0 & (\mathbf{0 , 4)} \text { is a max t.p. } \\
x=0, x=2 & & (\mathbf{2 , 0}) \text { is a min t.p. }
\end{array}
$$

64. The amount of a drug, in milligrams, remaining in a person's bloodstream t minutes after being administered is given by $A(t)=300 \sqrt{t}-15 t$. Find the rate of change of A with respect to t when $t=36$.

$$
\mathrm{A}^{\prime}(\mathrm{t})=\frac{150}{t^{\frac{1}{2}}}-15 \ldots . \mathrm{A}^{\prime}(36)=\frac{150}{36^{\frac{1}{2}}}-15=\frac{150}{6}-15=25-15=\mathbf{1 0}
$$

65. Given that $f(x)=4 x^{\frac{3}{2}}-2 \sqrt{x}$, find $f^{\prime}(x)$.

$$
\mathrm{f}^{\prime}(\mathrm{x})=12 x^{\frac{1}{2}}-x^{\frac{-1}{2}}
$$

66. Find the equation of the tangent to the curve with equation $y=\frac{8}{x}$ at the point P where $x=4$.
$\mathrm{m}=\mathrm{y}^{\prime}=\frac{-8}{4^{2}}=\frac{-1}{2} \ldots \mathrm{y}=\frac{8}{4}=2$ giving pt $(4,2) \ldots \mathbf{x}+\mathbf{2 y}-\mathbf{8}=\mathbf{0}$
67. Show that the line $y=8 x-11$ is a tangent to the parabola $y=3 x^{2}-4 x+1$ and find the coordinates of the point of contact.
(a) $\mathrm{b}^{2}-4 \mathrm{ac}=0$ or repeated root...point of contact $(\mathbf{2}, \mathbf{5})$
68. The point $\mathrm{P}(x, y)$ lies on the curve with equation $y=6 x^{2}-x^{3}$.
(a) Find the value of x for which the gradient of the tangent at P is 12 .
(b) Hence find the equation of the tangent at P.
(a) $x=2$
(b) $y=12 x-8$
69. A ball is thrown vertically upwards.

The height, h metres, of the ball after t seconds is given by the formula $h=30 t-5 t^{2}$.
(a) The velocity, v metres per second, of the ball after t seconds is given by $v=\frac{d h}{d t}$. Find a formula for v in terms of t and hence find the velocity of the ball after 3 seconds.
(b) Explain your answer to part (a) in terms of the ball's movement.
(a) $v=\frac{d h}{d t}=30-10 t \ldots @ 3$ secs $=0$
(b) Ball has reached maximum height
70. A curve has equation $y=x^{4}-2 x^{3}+5$.

Find the equation of the tangent to the curve at the point where $x=2$.
$y=5$
71. A company spends x thousand pounds a year on advertising and this results in a profit of P thousand pounds.
A mathematical model suggests that P and x are related by the formula $P=12 x^{3}-x^{4}$ for $0<x<12$.
Find the value of x in the interval $0<x<12$ which gives the maximum profit, justifying your answer.
$\mathbf{x}=9(\mathbf{(9 0 0 0)})$
72. Find the stationary points on the curve with equation $y=x^{3}-3 x^{2}-24 x-28$ and justify their nature.
$(-2,0)$ is a max $t . p$ and $(4,-108)$ is a min t.p.
73. The area, $A \mathrm{~cm}^{2}$, of tin required to make a box with a square base is given by the formula

$$
A=x^{2}+\frac{250}{x}, \quad x>0
$$

where $x \mathrm{~cm}$ is the side length of the base.
Find the value of x for which this area is a minimum, justifying your answer.

```
x = 5cm
```

74. The equation of a curve is $y=2 x^{3}-3 x^{2}$.
(a) Find the coordinates of the two points where the curve crosses the x-axis.
(b) Find the coordinates of the stationary points on the curve and determine their nature.
$\begin{array}{ll}\text { (a) }(0,0) \text { and }\left(\frac{3}{2}, 0\right) & \text { (b) }(0,0) \text { is a max t.p and }(1,0) \text { is a min t.p }\end{array}$
75. (a) A sequence is defined by the recurrence relation $u_{n+1}=2 u_{n}-5$ with $u_{0}=6$.

Find the value of u_{3}.
(b) A second sequence us defined by the recurrence relation $v_{n+1}=\frac{1}{3} v_{n}+4$. If $v_{2}=10$, find the value of v_{1}.
(a) $\mathrm{U}_{1}=7, \mathrm{U}_{2}=9, \mathrm{U}_{3}=2 \times 9-5=\mathbf{1 3}$
(b) $\frac{1}{3} v_{1}+4=10 \ldots \frac{1}{3} v_{1}=6 \ldots v_{1}=18$

