

CNHS Higher HW Solutions Week 3 [22/02/19] Qs 29 - 45

29. Solve the equation $2\cos x = \sqrt{3}$, where $0 \le x < 2\pi$.

$$\cos x = \frac{\sqrt{3}}{2} \dots x = \frac{\pi}{6}, \frac{11\pi}{6}$$

- 30. (a) Express $2x^2 + 8x + 7$ in the form $a(x+b)^2 + c$.
 - (b) Hence write down the coordinates of the turning point on the parabola with equation $y = 2x^2 + 8x + 7$.

(a) $2(x+2)^2 - 1$ (b) (-2,-1)

31. The function *f* is defined by $f(x) = \frac{5}{x^2 - 3x + 2}$.

Which two values of x must be excluded from the domain of the function f?

$$x^{2} - 3x + 2 \neq 0 \dots (x+3)(x-1) \neq 0 \dots x \neq -3, x \neq 1$$

32. What is the solution of the equation $2\sin x - \sqrt{3} = 0$ in the interval $\frac{\pi}{2} \le x \le \pi$?

$$\sin x = \frac{\sqrt{3}}{2}$$
...acute angle = $\frac{\pi}{3}$...angle in interval = $\frac{2\pi}{3}$

- 33. (a) Express $3x^2 12x + 10$ in the form $a(x+b)^2 + c$.
 - (b) Hence write down the coordinates of the turning point on the parabola with equation $y = 3x^2 12x + 10$.

(a) $3(x-2)^2-2$ (b) (2,-2)

34. Find the solution of the equation
$$\sqrt{2}\cos x + 1 = 0$$
 in the interval $\pi \le x \le \frac{3\pi}{2}$.

$$\cos x = \frac{-1}{\sqrt{2}} \dots R.A.A. = \frac{\pi}{4} \dots x = \frac{3\pi}{4} \frac{5\pi}{4}$$

35. Functions f and g are defined on the set of all real numbers by f(x) = 2x + 1 and g(x) = 4x - 2. Find f(f(x)) + g(g(x)) in the form ax + b.

 $\begin{aligned} f(f(x)) &= 2(2x+1) + 1 = 4x + 3\\ g(g(x)) &= 4(4x-2) - 2 = 16x - 10 \end{aligned} \qquad 4x + 3 + 16x - 10 = 20x - 7 \end{aligned}$

36. The function *f* is defined on the set of real numbers by f(x) = 3x - 8. Find an expression for the inverse function $f^{-1}(x)$ and find the value of $f^{-1}(7)$.

 $f^{-1}(x) = \frac{x+8}{3} \dots f^{-1}(7) = \frac{7+8}{3} = 5$

37. Express f(x) = (2x-1)(2x+5) in the form $a(x+b)^2 + c$.

$$4(x+1)^2 - 9$$

38. Functions f and g are given by $f(x) = 3x^2 - 1$ and $g(x) = x^2 + 2$. Express f(g(x)) in the form $ax^4 + bx^2 + c$.

 $3x^4 + 12x^2 + 11$

39. The diagram below shows the graph of $y = a\cos(bx) + c$

Write down the values of *a*, *b* and *c*.

a = 4 b = 2 c = -1

40. The diagram shows the graph of y = f(x). The graph has a maximum turning point at (0, 5) and a minimum turning point at (4, -2).

Sketch the graph of y = f(x-1) + 2.

Sketch as above ANNOTATED with max tp (1,7) and min tp (5,0)

41. Do not use a calculator in this question!

(a)	State the value	e of $\sin\frac{\pi}{4}$	(b)	Work out the value of $\cos \frac{2\pi}{3}$.
(c)	Hence evaluat	the $4\sqrt{2}\sin\frac{\pi}{4}$ co	$\cos\frac{2\pi}{3}$.	
(a) $\frac{1}{\sqrt{2}}$	(b) $\frac{-1}{2}$	(c) 2		

42. Functions f and g are defined on the set of all real numbers by $f(x) = x^2 + 3$ and g(x) = x + 4.

- (a) Find expressions for f(g(x)) and g(f(x)).
- (b) Show that the equation f(g(x)) + g(f(x)) = 0 has no real roots.

(a) $(x + 4)^2 + 3$ and $x^2 + 7$ (b) $b^2-4ac=4^2-4x1x13=-36...-36<0$ so no real roots

43. The functions *f* and *g* are defined on suitable domains by

$$f(x) = 4x - 3$$
 and $g(x) = \sqrt{x + 1}$.

- (a) A third function, *h*, is defined by h(x) = g(f(x)). Find an expression for h(x).
- (b) State the largest possible domain for *h*.

(a) by
$$h(x) = g(f(x)) = \sqrt{4x - 3 + 1} = \sqrt{4x - 2}$$
 (b) $x \ge \frac{1}{2}$

44. The function f is defined on the set of all real numbers by f(x) = 3x - 10. Find a formula for the inverse function $f^{-1}(x)$.

x+10		
3		

45. Functions f and g are defined by f(x) = 3x + 5 and g(x) = 2 - x. Find an expression for f(g(x)) and find the value of x for which f(g(x)) = 32.

 $f(g(x)) = 11 - 3x \quad x = -7$