

CNHS Higher HW Solutions

 Week 10 [12/04/19]Qs 136-150
136. If $y=\frac{1}{x^{3}}-\cos 2 x$, find $\frac{d y}{d x}$.

$$
\frac{d y}{d x}=-3 \mathrm{x}^{-4}+2 \sin 2 \mathrm{x}
$$

137. (a) Given that $f(x)=\sin ^{3} x$, find $f^{\prime}(x)$.
[Hint: write $f(x)=(\sin x)^{3}$ and use the chain rule]
(a) If $y=(1+\cos 2 x)^{4}$, find $\frac{d y}{d x}$.
(a) $3 \sin ^{2} x \cos x$
(b) $-8 \sin 2 x(1+\cos 2 x)^{3}$
138. Use the chain rule to find $f^{\prime}(x)$ when:
(a) $\quad f(x)=(5 x+2)^{4}$
(b) $\quad f(x)=\sqrt{8 x+1}$
(a) $f^{\prime}(x)=20(5 x+2)^{3}$
(b) $\frac{4}{\sqrt{8 \mathrm{x}+1}}$
139. Find: (a) $\int 6 \cos 2 x d x$ (b) $\int 2 \sin 4 x d x$
(a) $3 \sin 2 x+c$
(b) $-1 / 2 \cos 4 x+c$
140. A curve has equation $y=\sqrt{x^{2}+5}$.
(a) Use the chain rule to find $\frac{d y}{d x}$.
(b) Hence find the equation of the tangent to the curve at the point where $x=2$.
(a) $1 / 2\left(x^{2}+5\right)^{-1 / 2} \cdot 2 x=\frac{x}{\sqrt{x^{2}+5}}$
(b) $3 y=2 x+5$
141. (a) A function f is defined by $f(x)=\left(1-x^{3}\right)^{\frac{1}{3}}$.

Use the chain rule to find $f^{\prime}(x)$.
(b) Find $\int 6 \cos 2 x d x$.
(a) $-x^{2}\left(1-x^{3}\right)^{-2 / 3}$
(b) $3 \sin 2 x+c$
142. (a) Use the chain rule to differentiate $f(x)=(1+\sin x)^{4}$.
(b) Find $\int\left(\frac{2}{x^{4}}+\cos 5 x\right) d x$.
(a) $4 \cos x(1+\sin x)^{3}$
(b) $\frac{-2}{3} x^{-3}+\frac{1}{5} \sin 5 x+c$
143. (a) For what value of k does the equation $k x^{2}-6 x+1=0$ have equal roots?
(b) Find $\int \sqrt{6 x+1} d x . \quad\left[\right.$ Hint: use $\left.\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{a(n+1)}+C\right]$
(a) $\mathrm{k}=9$
(b) $\frac{(6 x+1)^{3 / 2}}{9}+c$
144. An oil production platform is to be connected by a pipeline to a refinery on shore.

The length of the underwater part of the pipeline is x kilometres.
The total cost of building a pipeline is $C(x)$ million pounds, where

$$
C(x)=2 x+100-\sqrt{x^{2}-243} .
$$

Show that $x=18$ gives the minimum cost and find this minimum cost.

Justify with nature table. $£ \mathbf{£ 1 2 7}$ million

145. (a) Given that $f(x)=\sqrt{3 x^{2}+2}$, use the chain rule to find $f^{\prime}(x)$.
(b) Evaluate $\int_{0}^{\frac{\pi}{6}} \cos 2 x d x$.
(a) $3 x\left(3 x^{2}+2\right)^{-1 / 2}$
(b) $\frac{\sqrt{3}}{4}$
146. (a) Find $\int \frac{1}{\sqrt{3 x+4}} d x$. [Hint: use $\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{a(n+1)}+C$]
(b) Given that $\int_{4}^{a} \frac{1}{\sqrt{3 x+4}} d x=2$, find the value of a.
(a) $\frac{2}{3}(3 x+4)^{\frac{1}{2}}+\mathrm{c}$
(b) $\mathbf{a}=15$
147. A circle with centre $C(-2,1)$ passes through the point $P(5,-2)$.
(a) Use the distance formula (or otherwise) to find the radius of the circle.
(b) Hence write down the equation of the circle.
(a) radius $=\sqrt{58}$
(b) $(x+2)^{2}+(y-1)^{2}=58$
148. A circle has equation $x^{2}+y^{2}+8 x+6 y-75=0$.

Find the centre and radius of this circle.
centre $(-4,-3)$ radius $=10$
149. A circle has equation $(x-3)^{2}+(y+2)^{2}=25$.
(b) Write down the coordinates of C , the centre of the circle.
(b) Find the equation of the tangent at the point $\mathrm{P}(6,2)$ on the circle.
(a) $(3,-2)$
(b) $4 y=-3 x+26$ or equivalent
150. Find the coordinates of the two points of intersection of the line with equation $y=2 x+5$ and the circle with equation $x^{2}+y^{2}-6 x-2 y-30=0$.
$(-3,-1)$ and (1,7)

