

CNHS Higher HW Solutions

Week 2 [15/02/19]
Qs 13-28
13. Use gradients to show that the points $A(-2,-3), B(1,1)$ and $C(7,9)$ are collinear.

$$
\mathrm{mAB}=\frac{1+3}{1+2}=\frac{4}{3} \quad \mathrm{mAC}=\frac{9+3}{7+2}=\frac{12}{9}=\frac{4}{3}
$$

$\mathrm{mAB}=\mathrm{mAC}$ and common point $\mathrm{A}=>$ points A, B, and C are collinear.
14. P is the point $(3,-3)$ and Q is $(-1,9)$.

The line l is parallel to PQ and passes through the point $\mathrm{R}(1,-2)$.
Find the equation of line l.
$\mathrm{m}_{\mathrm{I}}=\mathrm{m}_{\mathrm{PQ}}=\frac{9+3}{-1-3}=\frac{12}{-4}=-3$ and pt $R(1,-2) \quad \mathrm{y}+2=-3(\mathrm{x}-1) \ldots \mathrm{y}+2=-3 \mathrm{x}+3 \ldots \mathrm{y}=\mathbf{- 3 x}+\mathbf{1}$
15. Triangle ABC has vertices $\mathrm{A}(4,6), \mathrm{B}(5,-1)$ and $\mathrm{C}(10,4)$.
(a) Calculate the length of side AB .
(b) Show that triangle ABC is isosceles but not equilateral.
(a) $5 \sqrt{2}$
(b) $\mathrm{AB}=5 \sqrt{2}, \mathrm{BC}=5 \sqrt{2}, \mathrm{AC}=2 \sqrt{10} \ldots 2$ equal sides, isosceles.
16. A line joins the points $\mathrm{P}(-4,3)$ and $\mathrm{Q}(2,-7)$.

Find the equation of the perpendicular bisector of PQ .
$\mathrm{mPQ}=\frac{-7-3}{2+4}=\frac{-10}{6}=\frac{-5}{3} \Rightarrow \mathrm{~m}_{\text {PERP }}=\frac{3}{5}$ and midpoint $(-1,-2)$
$\mathrm{y}+2=\frac{3}{5}(\mathrm{x}+1)$
$5 y+10=3(x+1)$
$5 y+10=3 x+3$
$4 y-3 x=-7$ or equivalent
17. The line with equation $2 y-3 x=4$ makes an angle of a° with the positive direction of the x-axis. Calculate the value of a.
$2 \mathrm{y}-3 \mathrm{x}=4 \ldots 2 \mathrm{y}=3 \mathrm{x}+4 \ldots \mathrm{y}=\frac{3}{2} x+2 \ldots \mathrm{~m}=\tan \mathrm{a}=\frac{3}{2} \ldots \mathrm{a}=\tan ^{-1}\left(\frac{3}{2}\right)=56.3^{\circ}$
18. (a) Find the gradient of the line with equation $3 x+4 y=2$.
(b) The line L passes through the point $(1,1)$ and is perpendicular to the line with equation $3 x+4 y=2$. Find the equation of line L .
(a) $\mathrm{m}=\frac{-3}{4}$
(b) $y-1=\frac{4}{3}(x-1) \ldots 3 y-3=4(x-1) \ldots 3 y-3=4 x-4 \ldots 3 y=4 x-1$
19. A straight line makes an angle of 120° with the positive direction of the x-axis. Find the exact value of the gradient of this line.

$$
m=\tan 120^{\circ}=-\sqrt{3}
$$

20. (a) Sketch triangle ABC with vertices $\mathrm{A}(-4,1), \mathrm{B}(12,3)$ and $\mathrm{C}(7,-7)$.
(b) Find the equation of the median CM , where M lies on AB .
(c) Find the equation of the altitude AD , where D lies on BC .
(d) Find the coordinates of the point of intersection of CM and AD.
(a) $y=-3 x+14$
(c) $2 \mathrm{y}=-\mathrm{x}-2$
(d) $(6,-4)$
21. Calculate the size of the obtuse angle between the line $y=3 x+2$ and the x-axis.

22. The diagram shows a rhombus $P Q R S$ with diagonals $P R$ and $Q S$. Point Q has coordinates $(-2,4)$ and diagonal PR has equation $y=3 x-1$.

Find the equation of diagonal QS.
$3 y=-x+10$
23. Functions f and g are defined on the set of real numbers by $f(x)=2 x+4$ and $g(x)=3 x-2$. Find simplified expressions for $f(g(x))$ and $g(f(x))$.
$f(g(x))=f(3 x-2)=2(3 x-2)+4=6 x-4+4=\mathbf{6 x} \quad g(f(x))=g(2 x+4)=3(2 x+4)-2=6 x+12-2=\mathbf{6 x}+\mathbf{1 0}$
24. Functions f and g are defined on the set of real numbers by $f(x)=x^{2}+1$ and $g(x)=3 x-4$.

Find simplified expressions for:
(a) $\quad f(g(x))$
(b) $\quad g(f(x))$
(c) $\quad f(f(x))$
(d) $\quad g(g(x))$
(a) $f(g(x))=f(3 x-4)=(3 x-4)^{2}-1=9 x^{2}-24 x+16-1=9 x^{2}-\mathbf{2 4 x}+\mathbf{1 5}$
(b) $g(f(x))=g\left(x^{2}+1\right)=3\left(x^{2}+1\right)-4=3 x^{2}+3-4=\mathbf{3 x}^{\mathbf{2}} \mathbf{- 1}$
(c) $f(f(x))=f\left(x^{2}+1\right)=\left(x^{2}+1\right)^{2}+1=x^{4}+2 x^{2}+1+1=x^{4}+\mathbf{2} x^{2}+\mathbf{2}$
(d) $g(g(x))=g(3 x-4)=3(3 x-4)-4=9 x-12-4=9 x-16$
25. (a) Express $x^{2}+6 x+14$ in the form $(x+a)^{2}+b$.
(a) Hence write down the coordinates of the turning point on the parabola with equation $y=x^{2}+6 x+14$.
(a) $(x+3)^{2}-9+14=(x+3)^{2}+5$
(b) Min TP (-3,5)
26. (a) The function f is defined on the set of real numbers by $f(x)=2 x+3$.

Find an expression for the inverse function $f^{-1}(x)$.
(b) Find $f\left(f^{-1}(x)\right)$.
(a) $\mathrm{x} \rightarrow \mathrm{x} 2+3 \rightarrow \mathrm{f}(\mathrm{x}) \ldots \ldots-3 \div 2 \rightarrow \mathrm{f}^{-1}(\mathrm{x}) \ldots \mathrm{f}^{-1}(\mathrm{x})=\frac{x-3}{2}$
(b) x (remember, this is always true!)
27. The point with coordinates $A(3,2)$ is on the graph with equation $y=f(x)$.

Write down the image of the point A on the graph with equation:
(a) $y=-f(x-1)$
(b) $y=2 f(x)+1$
$\begin{array}{ll}\text { (a) shifted right one then minus the } y \text { so }(\mathbf{4 , - 2}) & \text { (b) } 2 \mathrm{y} \text { then up } 1 \text { so }(\mathbf{3}, \mathbf{5})\end{array}$
28. Functions f and g are defined on the set of real numbers by $f(x)=x-1$ and $g(x)=x^{2}$.
(a) Find expressions for $f(g(x))$ and $g(f(x))$.
(b) The function h is defined by $h(x)=f(g(x))+g(f(x))$.

Find an expression for $h(x)$ in its simplest form.
(a) $x^{2}-1$ and $(x-1)^{2}$
(b) $h(x)=x^{2}-1+(x-1)^{2}=x^{2}-1+x^{2}-2 x+1=2 x^{2}-2 x=2 x(x-1)$

