

CNHS Higher HW
Solutions
Week 1 [08/02/19]
Qs 1-12

1. Given the points $\mathrm{A}(-2,1), \mathrm{B}(4,9)$ and $\mathrm{C}(-6,-1)$, use the distance formula to calculate the lenoths of $A B$ and $A C$.

$$
\begin{aligned}
& \mathbf{A B}=\sqrt{(4+2)^{2}+(9-1)^{2}}=\sqrt{6^{2}+8^{2}}=\sqrt{100}=10 \\
& \mathbf{A C}=\sqrt{(-2+6)^{2}+(1+1)^{2}}=\sqrt{4^{2}+2^{2}}=\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

2. The line joining the points $(-2,-3)$ and $(6, k)$ has gradient $\frac{2}{3}$.

What is the value of k ?

$$
\frac{k+3}{6+2}=\frac{k+3}{8}=\frac{2}{3} \ldots \ldots \ldots \ldots . k+3=\frac{16}{3} \ldots \ldots \ldots . k=\frac{16}{3}-3=\frac{16}{3}-\frac{9}{3}=\frac{7}{3}
$$

3. Use gradients to prove that the points $\mathrm{A}(-2,-1), \mathrm{B}(4,3)$ and $\mathrm{C}(16,11)$ are collinear.

$$
\mathrm{mAB}=\frac{3+1}{4+2}=\frac{4}{6}=\frac{2}{3} \quad \mathrm{mAC}=\frac{11+1}{16+2}=\frac{12}{18}=\frac{2}{3}
$$

$\mathrm{mAB}=\mathrm{mAC}$ and common point $\mathrm{A}=>$ points A, B, and C are collinear.
4. (a) Find the gradient of the straight line joining the points $\mathrm{A}(-1,0)$ and $\mathrm{B}(3,8)$.
(b) Hence calculate the size of the angle that the line $A B$ makes with the positive direction of the x-axis.

$$
\mathrm{m}=\frac{8-0}{3+1}=\frac{8}{4}=2 \quad \mathrm{~m}=\tan \theta=2 \ldots \theta=\tan ^{-1}(2)=63.4^{\circ}
$$

5. Line L has equation $2 x+y=8$.
(a) What is the gradient of line L?
(b) Find the equation of the line parallel to L which passes through the point $(3,1)$.
```
y=-2x+8\ldotsm=-2
y-1=-2(x-3)...y-1=-2x+6\ldotsy=-2x+7
```

6. Find the equation of the perpendicular bisector of the line AB , where A is the point $(2,-1)$ and B is $(8,3)$.

$$
\begin{array}{ll}
\operatorname{mAB}=\frac{3+1}{8-2}=\frac{4}{6}=\frac{2}{3} \Rightarrow \operatorname{mperp}=\frac{-3}{2} \quad y-1=\frac{-3}{2}(x-5) \\
\text { midpt }(5,1) & 2 y-2=-3(x-5) \\
& 2 y-2=-3 x+15 \\
& 3 x+2 y=17 \text { or equivalent }
\end{array}
$$

7. (a) Sketch triangle ABC with vertices $\mathrm{A}(4,3), \mathrm{B}(6,1)$ and $\mathrm{C}(-2,-3)$.
(b) Find the equation of the median from A .

$$
\begin{aligned}
& \text { midptBC }=(2,-1) \\
& m_{\text {MEDIAN }}=\frac{3+1}{4-2}=\frac{4}{2}=2 \\
& y+1=2(x-2) \\
& y+1=2 x-4 \\
& y-2 x=-5 \text { or equivalent }
\end{aligned}
$$

8. Find the equation of the line which passes through the point $(-1,3)$ and is perpendicular to the line with equation $4 x+y-1=0$.

$$
\begin{aligned}
& \mathrm{y}=-4 \mathrm{x}+1 \ldots \mathrm{~m}=-4 \Rightarrow \mathrm{mPERP}^{2}=\frac{1}{4} \text { and } \mathrm{pt}(-1,3) \\
& \mathrm{y}-3=\frac{1}{4}(\mathrm{x}+1) \\
& 4 \mathrm{y}-12=1(\mathrm{x}+1) \\
& 4 \mathrm{y}-12=\mathrm{x}+1 \\
& 4 \mathrm{y}-\mathrm{x}=13 \text { or equivalent }
\end{aligned}
$$

9. Given that the points $\mathrm{A}(-1,0), \mathrm{B}(1,3)$ and $\mathrm{C}(5, k)$ are collinear, find the value of k.

$$
\mathrm{mAB}=\frac{3-0}{1+1}=\frac{3}{2} \quad \mathrm{mAC}=\frac{k-0}{5+1}=\frac{k}{6}=\frac{3}{2} \ldots \ldots . k=\frac{18}{2}=9
$$

10. A and B are the points $(-3,-1)$ and $(5,5)$ respectively.
(a) Find the equation of the line AB .
(b) Find the equation of the perpendicular bisector of AB .
$\mathrm{mAB}=\frac{5+1}{5+3}=\frac{6}{8}=\frac{3}{4}$ and pt $(5,5) \ldots y-5=\frac{3}{4}(x-5) \ldots 4 y-20=3(x-5) \ldots 4 y-20=3 x-15 \ldots 4 y-3 x=5$ or eq.
midpt $(1,2)$ and $m_{\text {PERP }}=\frac{-4}{3} \ldots y-2=\frac{-4}{3}(x-1) \ldots 3 y-6=-4(x-1) \ldots 3 y-6=-4 x+4 \ldots 3 y+4 x=10$ or eq.
11. The line L passes through the point $(-2,-1)$ and is parallel to the line with equation $5 x+3 y-6=0$. Find the equation of line L in the form $a x+b y+c=0$.

$$
\begin{aligned}
& 5 \mathrm{x}+3 \mathrm{y}-6=0 \ldots 3 \mathrm{y}=-5 \mathrm{x}+6 \ldots \mathrm{y}=\frac{-5}{3} x+2 \ldots \mathrm{~m}=\frac{-5}{3} \ldots m L=\frac{-5}{3} \text { AND point }(-2,-1) \\
& \mathrm{y}+1=\frac{-5}{3}(\mathrm{x}+2) \ldots 3 \mathrm{y}+3=-5(\mathrm{x}+2) \ldots 3 \mathrm{y}+3=-5 \mathrm{x}-10 \ldots 5 \mathrm{x}+3 \mathrm{y}+\mathbf{1 3}=\mathbf{0}
\end{aligned}
$$

12. (a) Find the equation of the straight line joining the points $\mathrm{A}(-3,0)$ and $\mathrm{B}(5,4)$.
(b) The line makes an angle of a° with the positive direction of the x-axis.

Find the value of a correct to 1 decimal place.

$$
\begin{aligned}
& \mathrm{m}=\frac{4-0}{5+3}=\frac{4}{8}=\frac{1}{2} \text { and } \mathrm{pt}(-3,0) \ldots \mathrm{y}-0=\frac{1}{2}(\mathrm{x}+3) \ldots \mathrm{y}=\frac{1}{2} \mathrm{x}+\frac{3}{2} \\
& \mathrm{~m}=\tan \theta=\frac{1}{2} \ldots \theta=\tan ^{-1}\left(\frac{1}{2}\right)=\mathbf{2 6 . 6 ^ { \circ }}
\end{aligned}
$$

