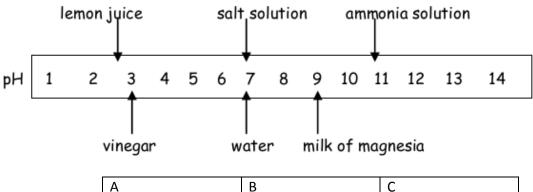


Chemistry Department


53 Chemistry

Chemical Changes and Structure

(e) Acids and Bases HOMEWORK

1. The chart shows the pH of some common substances:

Α	В	С
Ammonia solution	Lemon juice	Milk of magnesia
D	Е	F
Salt solution	Vinegar	Water

- a) Identify the two substances which are acids.
- b) Identify the two substances which show a **decrease** in pH when they are diluted with water.
 - (2)

(3)

(2)

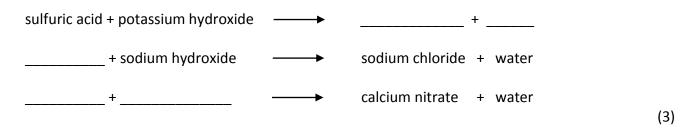
- 2. Name three different methods of measuring the pH of a substance.
- 3. What are you measuring when you take the pH of a substance? (1)
- 4. Copy and complete the following sentence:

In ______ solutions the concentration of hydrogen ions is greater than the concentration of hydroxide ions. (1)

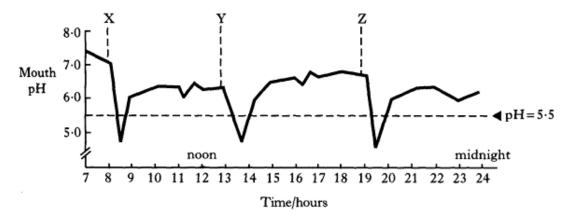
5. Class 4C made some statements about the effect of adding water to an **alkaline** solution.

Α	The pH of the solution will rise	
В	The solution will become more concentrated	
С	The pH of the solution will fall towards 7	
D Adding water will have no effect on the solution		

Identify the correct statement.


<u>Hom</u>	ework 22	Concentration calculations	<u>/18</u>
1.	a) 5 moles of hydro	n of solution is obtained by dissolving gen chloride in 2 litres of solution per sulfate in 200 cm ³ of solution	;: (2)
2.	a) 0.4 mol ℓ ⁻¹ soluti	lution is required to make: on containing 1 mole of sodium hydr on containing 0.05 moles of magnesi	oxide
3.	•	re dissolved in: If ℓ^{-1} sodium carbonate solution of ℓ^{-1} barium chloride solution	(2)
4.	What concentration	າ of solution is made by dissolving 16	.4 g of calcium nitrate in 250 ml of solution? (3)
5.	What is the concendissolved solute?	tration of 100 cm³ of ammonium hyd	roxide solution containing 0.7 g of (3)
6.	What volume of 4 n	mole ℓ^{-1} sulfuric acid solution (H $_2$ SO $_4$)	
7.	What volume of sol	ution is required to make a 0.02 mol	ℓ^{-1} solution from 3.9 g of lithium fluoride? (3)

1. The following oxides were added to water. Arrange them into a table with **three** suitable headings giving the effect on the pH of the water.


sodium oxide, aluminium oxide, carbon dioxide, magnesium oxide, barium oxide, dinitrogen tetroxide

(3)

2. Copy & complete the following word equations.

3. Ava eats three meals a day. The graph shows how the pH in her mouth varies during the day. X, Y and Z are meal times.

Teeth decay when the pH in the mouth falls below 5.5.

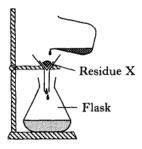
- a) What happens to the pH in the mouth after meal times?
- b) Some of Ava's friends eat snacks between meals. Why does this lead to more tooth decay?
- c) Many toothpastes are alkaline and contain sodium fluoride. Why are toothpastes alkaline?
- d) Write the formula for sodium fluoride.

(4)

- 1. Write balanced ionic equations for:
 - a) Copper (II) carbonate and hydrochloric acid
 - b) Magnesium and nitric acid

(4)

2. Identify the spectator ions in these equations :

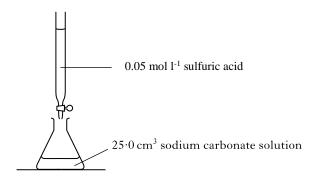

a)
$$2H^{+}(aq) + SO_4^{2-}(aq) + 2K^{+}(aq) + 2OH^{-}(aq)$$
 \longrightarrow $2K^{+}(aq) + SO_4^{2-}(aq) + 2H_2O(I)$

b)
$$Na^{+}(aq) + Cl^{-}(aq) + Ag^{+}(aq) + NO_{3}^{-}(aq)$$
 AgCl(s) + $Na^{+}(aq) + NO_{3}^{-}(aq)$

(2)

3. Copper carbonate was added to dilute sulfuric acid in a beaker until no more reacted.

$$CuCO_3(s) + H_2SO_4(aq) \rightarrow CuSO_4(aq) + CO_2(g) + H_2O(l)$$



Α	copper carbonate, CuCO₃	
В	sulfuric acid, H₂SO₄	
С	copper sulfate, CuSO ₄	
D	D carbon dioxide, CO ₂	
E	water, H₂O	

- a) Identify the residue X.
- b) Identify the substance(s) which collected in the flask.

(2)

4. A student investigated the reaction between dilute sulfuric acid and sodium carbonate.

- a) Name the salt produced in the above reaction.
- b) The results showed that 20cm³ of sulfuric acid was required to neutralise the sodium carbonate solution.

Calculate the number of moles of sulfuric acid in this volume.

1. What volume of hydrochloric acid (concentration 0.1 mol l⁻¹) is required to neutralise 50cm³ of sodium hydroxide solution (concentration 0.2 mol l⁻¹)?

$$HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H2O(I)$$
 (3)

2. What is the concentration of sulfuric acid if 50cm³ are neutralised by 25cm³ of potassium hydroxide solution (concentration 1 mol l⁻¹)?

$$H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(l)$$
 (3)

3. What volume of nitric acid (concentration 2 mol l⁻¹) is required to neutralise 20cm³ of potassium hydroxide solution (concentration 0.5 mol l⁻¹)?

$$HNO_3(aq) + KOH(aq) \rightarrow KNO_3(aq) + H_2O(I)$$
 (3)

4. What is the concentration of hydrochloric acid if 12.6cm³ neutralises 20cm³ of lithium hydroxide solution (concentration 0.1 mol l-¹)?

$$HCI(aq) + LiOH(aq) \rightarrow LiCI(aq) + H_2O(I)$$
 (3)

5. What is the concentration of sulfuric acid if 17.3cm³ neutralises 25cm³ of sodium hydroxide solution (concentration 0.5 mol I⁻¹)?

$$H_2SO_4(aq) + 2 NaOH(aq) \rightarrow Na_2SO_4(aq) + 2 H_2O(I)$$
 (3)