Science Skills

$$
\text { Level }_{3}
$$

Reading Tables Book 1

Drink	Alcohol (units)
1 bottle of alcopop	$2 \cdot 0$
1 pint of lager	$2 \cdot 3$
1 glass of wine	$2 \cdot 1$
1 pint of cider	$3 \cdot 0$
1 measure of spirits	$1 \cdot 4$

Name:

Class:

Tables

Tables are used to display the results of an investigation.
Tables are used to compare things.
They show the relationship between two or more things.
It is very important to read the headings carefully.
The table below shows the number of units of alcohol in some common drinks.
The things being compared are the drinks and the number of units of alcohol. You know what things are being compared because they are in the headings.

In this table the headings are in italics.

Headings	
Drink	Alcohol (units)
1 bottle of alcopop	$2 \cdot 0$
1 pint of lager	$2 \cdot 3$
1 glass of wine	$2 \cdot 1$
1 pint of cider	$3 \cdot 0$
1 measure of spirits	$1 \cdot 4$

Before you begin to look at the question, you should read the whole table. You should put it into sentences, building in the headings. Read it aloud if this helps.

Example:

In the drink 1 bottle of alcopop there are 2.0 units of alcohol.
In the drink 1 pint of lager, there are 2.3 units of alcohol.
In the drink 1 glass of wine, there are 2.1 units of alcohol.
In the drink 1 pint of cider, there are 3.0 units of alcohol.
In the drink 1 measure of spirits, there are 1.4 units of alcohol.

Once you have done this it should be very easy to find any information that you need for the questions.

Since you are working at Level 3, you are expected not only to find information in a table, but also to use the information to do a calculation.

Some of the most common types of calculation are on the following page.

Remember:

Look very, very closely at the questions. Some of them can be tricky.

Interpreting the Tables

You are expected to do the following:

1. Extract information directly from the table.
2. Find the relevant information and then add, subtract or multiply.
3. Divide.

Questions which start "How many times greater..." or "How many times more..." usually require you to divide.
4. Percentages.

Remember that per cent means out of a hundred. The symbol is \%.
So 54% means 54 out of a hundred.
The calculation should be as follows:
The number you have been asked about \div the total number $\mathbf{x} \mathbf{1 0 0}$
Example:
Calculate the percentage of students studying biology in the student group below:

Subject	Number of Students
Medicine	8
Biology	2
Engineering	4
Mathematics	6

Number of students studying biology 2
Total number of students
20
(The number you have been asked about (2) \div the total number (20) $\times \mathbf{1 0 0}$) $2 \div 20 \times 100=\underline{\mathbf{1 0 \%}}$
5. Averages

Add up all the numbers in the category and divide by the number of entries.
Example:
Calculate the average mark achieved by Brian in the tests.

Name of student	Test 1	Test 2	Test 3	Test 4	Test 5
Linda	55	62	60	64	64
Brian	39	39	45	48	49
Melanie	46	51	53	59	65
John	76	79	79	81	85

Brian's marks were $39+39+45+48+49=220$
(There were 5 tests)
$219 \div 5=\underline{44}$
6. Draw Conclusions

Draw conclusions means write what you have found out from the table.

Example:

A student carried out an investigation to find out how long it took two substances to dissolve; first in water at $30^{\circ} \mathrm{C}$, then at $60^{\circ} \mathrm{C}$, then at $80^{\circ} \mathrm{C}$.

The results are in the table below.

Substances	$30^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$
A	20 minutes	15 minutes	8 minutes
B	11 minutes	9 minutes	3 minutes
C	30 minutes	22 minutes	14 minutes
D	15 minutes	10 minutes	4 minutes
E	35 minutes	21 minutes	13 minutes

What conclusions can you draw from the results?

You have to compare the substances and the times.
As you read the table aloud in sentences, you become aware that as the temperature is getting higher, the number of minutes is getting smaller.
For example: "Substance C dissolves in 30 minutes at $30^{\circ} \mathrm{C}$. It dissolves in 22 minutes at $60^{\circ} \mathrm{C}$ and it dissolves in 14 minutes at $80^{\circ} \mathrm{C}$."

Since the student wanted to know how quickly the substances dissolved, the conclusions will include words such as
fastest, slowest, faster than, slower than, largest, smallest, increase, decrease, etc.

The conclusion is what you found out. There are lots of things you could write. All the answers below are correct.
The more 'scientific' ways of writing the conclusions are in red.

- Substance B dissolved faster than all the rest at $30^{\circ} \mathrm{C}$
- Substance E was the slowest to dissolve at $30^{\circ} \mathrm{C}$
- All the substances dissolved at a different rate, no matter what the temperature was.
- Substance A took longer to dissolve at $60^{\circ} \mathrm{C}$ than Substances B and D.
- All the substances dissolved faster as the temperature increased.
- The lower the temperature, the more slowly the substances dissolve.
- As the temperature increases, all the substances dissolve more quickly.
- The greater the temperature, the faster the speed of dissolving.

7. Predict

Tables are used to predict.

'Predict' means use the information in the table to make an intelligent guess about something which is not in the table.

After you have read the table in sentences, you will have noticed that the numbers are going up, going down or staying more or less the same.

Example:
A student carried out an investigation to find out how long it took two substances to dissolve first in water at $30^{\circ} \mathrm{C}$, then at $60^{\circ} \mathrm{C}$, then at $80^{\circ} \mathrm{C}$.

The results are in the table below.

Substances	$30^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$
\mathbf{A}	20 minutes	15 minutes	8 minutes
\mathbf{B}	11 minutes	9 minutes	3 minutes
\mathbf{C}	30 minutes	22 minutes	14 minutes
\mathbf{D}	15 minutes	10 minutes	4 minutes
E	35 minutes	21 minutes	13 minutes

Predict the number of minutes Substance \mathbf{C} would have taken to dissolve if the temperature of the water was $70^{\circ} \mathrm{C}$.

What to do:

1. Find the data for Substance C in the table. (now coloured)
2. Decide where in the table $70^{\circ} \mathrm{C}$ would be. (now marked)
3. The answer at Level 3 is "Between 22 minutes and 14 minutes". You do not have to guess an exact number. (If you did, it would be $18^{\circ} \mathrm{C}$ or $19^{\circ} \mathrm{C}$.)

If you are asked to predict the number of minutes Substance C would have taken to dissolve at $10 \mathbf{0}^{\circ} \mathrm{C}$, the answer would be "Less than 14 minutes".
If you wanted to be more exact (though this is not usually necessary at Level 3) the answer would be $6^{\circ} \mathrm{C}$ or $7^{\circ} \mathrm{C}$.

1. Some insects help gardeners by eating pests which attack their plants.

The table below shows some of these beneficial (good) insects and the pests they eat.

Beneficial insect	Pests eaten
hover flies	leaf hoppers, caterpillars
ground beetles	snails, slugs
ladybirds	aphids
wasps	caterpillars, grubs
lacewings	aphids

Aphids

Which two beneficial insects eat aphids?
\qquad and \qquad
2. Compounds containing calcium, iron and copper must be soluble in water to be good fertilisers.
The table below shows the effect of soil pH on the solubility of compounds.

Metal in compound	Soil pH						
	3	4	5	6	7	8	9
calcium							
iron							
copper							
Key	ble				inso		

\qquad
3. A person's pulse rate can be used as a guide to their level of fitness, as shown in the table below.

Resting Pulse Rate (beats per minute)	Level of Fitness
Below 50	Outstanding
$50-60$	Good
$61-90$	Normal
Above 90	Poor

State the level of fitness of a person with a resting pulse rate of 48 beats per minute.

Level of fitness is \qquad
4. The table below shows how often a sample of Scottish students take exercise.

Frequency of exercise	Number of students	
	Male	Female
Daily	35	20
2-3 times a week	25	30
Once a week	7	18
Once a month	3	9

Tick the statement below which is correct:

A Fewer females exercise once a month than males.
B More males exercise once a week than females.
C Fewer females exercise daily than males.
D More males exercise 2-3 times a week than females.
5. The table below shows the results of an investigation into the removal of stains.

Type of stain	Washing temperature $\left({ }^{(} \mathrm{C}\right)$	Biological detergent	Non-biological detergent
Grass	40	\checkmark	\times
Mud	40	\checkmark	\times
Grass	100	\times	\times
Mud	100	\checkmark	\checkmark
\times stain removed			

Tick the statement which is correct:
A Grass stains were removed by a biological detergent at $40^{\circ} \mathrm{C}$
B Grass stains were removed by a biological detergent at $100^{\circ} \mathrm{C}$
C Grass stains were removed by a non-biological detergent at $40^{\circ} \mathrm{C}$
D Grass stains were removed by a non-biological detergent at $40^{\circ} \mathrm{C}$
6. Males have, on average, between 15% and 17% body fat.

Females have, on average, between 18% and 22% body fat.
The table below gives average percentage of body fat for athletes in four sports.

	Sport	Average body fat of athletes (\%)	
		Female	
A	Swimming	10	16
B	Running	9	12
C	Volleyball	11	16
D	Shotput	18	24

In which sport do the athletes have a higher than average percentage of body fat?
7. The table below shows the temperature ranges in which different types of yeast can grow.

Type of yeast	Temperature range $\left({ }^{\circ} \mathrm{C}\right)$
1	$14-16$
2	$12-30$
3	$18-35$
4	$8-15$

Which types of yeast will not grow at $16^{\circ} \mathrm{C}$? (Tick)
A Types 1 and 3
B \quad Types 1 and 4
C Types 2 and 3
D \quad Types 3 and 4
8. The table below shows the temperatures required before and during the germination of four types of seeds.

Type of seeds	Temperature required before germination	Temperature required during germination
Anemone	warm or cold	warm
Fraxinus	warm, then cold	warm
Smilacina	cold, then warm, then cold	warm
Erythronium	cold	cold

Fully describe the changes in temperature required for Fraxinus seeds to germinate.
\qquad
\qquad
\qquad
9. The results of an investigation into the benefits of using protected cultivation are shown in the table below.

	Without protected cultivation	With protected cultivation
Cost of pesticides (per hectare/year)	$£_{9} 500$	$£_{6} 6400$
Yield (tonnes per hectare/year)	125	375

Calculate how much money was saved on pesticides by using protected cultivation.
Working

Answer: $£$
10. Bees are beneficial insects. (They do a lot of good.)

The number of bees visiting a garden in the years 2000 and 2010 is shown in the table.

	Year	
	2000	2010
Number of bees visiting the garden	240	60

Calculate how many times greater was the number of bees that visited the garden in 2000 compared to 2010.

Working

Answer: There were \qquad times more bees.
11. The table below shows the number of units in some common drinks.

Drink	Alcohol (units)
1 bottle of alcopop	$2 \cdot 0$
1 pint of lager	$2 \cdot 3$
1 glass of wine	$2 \cdot 1$
1 pint of cider	$3 \cdot 0$
1 measure of spirits	$1 \cdot 4$

How many units of alcohol have been taken in by a person who drinks $\mathbf{3}$ pints of cider?

Answer: \qquad units
12. The table below compares the content per $100 \mathrm{~cm}^{3}$ of full fat milk and evaporated milk.

Content	Full fat milk $\left(\mathrm{g} / 100 \mathrm{~cm}^{3}\right)$	Evaponated milk $\left(\mathrm{g} / 100 \mathrm{~cm}^{3}\right)$
protein	3	8
sugars	4	12
fat	4	8
minerals	less than 1	less than 1

a) What is the protein content of evaporated milk? \qquad $\mathrm{g} / 100 \mathrm{~cm}^{3}$
b) How many times more sugar is there in $100 \mathrm{~cm}^{3}$ of evaporated milk compared to $100 \mathrm{~cm}^{3}$ of full fat milk?

Answer: \qquad times more sugar
13. A group of students investigated the number of caddis fly larvae living in a river. They counted the number of caddis fly larvae in water samples from five points in the river. They measured the speed of the river at each point. Their results are shown in the table below.

Speed of river $(\mathrm{cm} / \mathrm{s})$	50	100	150	200	250
Number of caddis fly larvae	15	20	50	70	80

Complete the conclusion below by filling in the correct answer from the box:

> increases
> decreases
> stays the same

As the speed of the river increases, the number of caddis fly

14. The table below shows the number of drug-related deaths in Scotland over a five-year period.

Year	Number of drug-related deaths
1	153
2	209
3	247
4	251
5	267

Tick the correct statement:
A The table shows that the number of drug-related deaths increases
B The table shows that the number of drug-related deaths decreases
C The table shows that the number of drug-related deaths stays constant (the same)
D The table shows that there is no general trend in the number of drug-related deaths.
(Trend means the way that things are going)
15. The table below shows information about recycled waste, and waste dumped in land-fill sites over a five-year period.

Year	2001	2002	2003	2004	2005
Recycled waste (million tonnes)	5	6	8	10	13
Waste dumped in land-fill sites (million tonnes)	160	150	130	110	90

Complete the conclusion below by filling in the correct answer from the box:

> increases
> decreases stays the same

As the amount of recycled waste increases, the amount of waste dumped in land-fill

 sites \qquad16. The table below shows the power generated by a wind turbine at different wind speeds.

Wind speed $(\mathrm{m} / \mathrm{s})$	7.5	9	10	11	12	14
Power generated (kW)	100	200	300	400	500	600

a) Complete the conclusion below by filling in the correct answer from the box:

> increases
> decreases
> stays the same

As the wind speed increases, the power generated \qquad
b) Predict the power generated when the wind speed is $13 \mathrm{~m} / \mathrm{s}$.
\qquad kW
17. The daily energy needs of children of different ages are shown in the table.

$*$ Age (years)	Daily energy needs (kcal)	
	Males	Females
1	1300	1200
4	1800	1700
7	2000	1900
11	2500	2100
15	3000	2200

One conclusion that can be drawn from these results is that males have a higher daily energy need than females.
a) Draw one other conclusion from these results.
b) Predict the daily energy need of a female aged 9 years

Answer: \qquad kcal
18. The table below shows the size of bulbs and how deep they should be planted.

Bulb	Size of bulb (cm)	Depth of planting (cm)
Snowdrop	2	6
Tulip	3	9
Hyacinth	5	15
Daffodil	8	24

a) Which bulb is 3 cm in size?
b) Which bulb should be planted at the greatest depth? \qquad
c) Draw one conclusion from the information in the table.
\qquad
\qquad
d) Another bulb has a size of 4 cm . Predict the depth at which this bulb should be planted.
\qquad cm
19. The table shows how changing the percentage of tin can alter the melting point of solder.

Solder	Percentage of tin	Melting point in ${ }^{\circ} \mathrm{C}$
A	40	260
B	50	227
C	67	190

a) What effect does increasing the percentage of tin have on the melting point of solder?
b) Another type of solder contains 55% tin. Predict the temperature at which this solder will melt.
\qquad ${ }^{\circ} \mathrm{C}$
20. An experiment was set up to find out the effect of light on the production of oxygen from a plant. A lamp was placed at different distances and the number of oxygen bubbles produced in one minute were counted.

The results are in the table below.

Distance of lamp from plant in cm	Number of bubbles of oxygen produced in one minute
30	24
40	19
60	10
100	4

a) Complete the sentence below using either increases or decreases.

As the distance of the lamp from the plant \qquad the number of bubbles of oxygen gas produced in one minute \qquad .
b) Predict the number of bubbles of oxygen produced if the lamp was 120 cm from the plant.
\qquad bubbles
21. Water type varies around the country. It can be "soft", "medium" or "hard".

An experiment was carried out to investigate the effect of water type on stain removal. Three beakers were set up. Each beaker had a stained cloth, detergent and water. Each beaker had a different type of water.

Soft water and detergent

Medium water and detergent

Hard water and detergent

The beakers were left under identical conditions and the percentage of stain removed was measured. The results are shown in the table.

Water type	Percentage of stain removed
Soft	90
Medium	79
Hard	62

What conclusion can be drawn from the results?
\qquad
\qquad
22. The recommended percentages of different substances in the human body are shown in the table below.

Substance	Recommended percentage (\%)
Protein	14
Fat	
Carbohydrate	1
Water	63
Minerals	2
Total	$\mathbf{1 0 0}$

What is the recommended percentage of fat in the human body?

Fill it into the table.

23. The table shows the blood group of a number of students.

Calculate the percentage of students with blood group 0 .

Blood group	Number of students
A	4
B	4
O	11
AB	1

Answer: \qquad \%
24. Four students made two measurements of their vital capacities.

Student	Vital capacity $\left(\mathrm{cm}^{3}\right)$	
	First measurement	Second measurement
A	3980	4020
B	4000	4200
C	4100	4120
D	4125	4100

Which student had an average vital capacity of $4100 \mathrm{~cm}^{3}$?

Working

Answer: Student \qquad
25. A student, when at rest, measured her heart rate three times using a stethoscope and a stopwatch. The results are in the table.

Measurement	Number of beats in 20 seconds
1	21
2	21
3	24

Calculate the student's average heart rate in 20 seconds.

Working:

\qquad

