Software Design and Development
The software development process is an iterative process.

In light of new information earlier stages are revisited within the software development process.

The steps of the software Development Process
· Analysis

· Design

· Implementation

· Testing

· Documentation – not covered in this course
· Evaluation

· Maintenance – not covered in this course
The steps of the software Development Process

Analysis – know clearly what the program has to do.
Design – decide on form layout, inputs, processes and outputs.
Implementation – creating the forms and writing the instruction code.

Testing- making sure the program works correctly.
Documentation – writing a user guide and a technical guide.
Evaluation –reviewing how well the program solves the original problem.
Maintenance- making any upgrades required.
Analysis

System analyst

· System Analyst produces the program specification.

[image: image13.jpg]

Firstly there is a need to convert the description given into a more formal document which is called the program specification.

Example 1: The class teacher wants a program to work out the percentage mark of a tests out of 60. The program should also show on the screen the mark of each pupil achieved along with their name and house. The percentage mark should be displayed.
Analysis is looking at and understanding the problem and should be re-written clarifying inputs, process(es) and output(s).
Analysis – Program specification

Design, write and test a program to:

· ask/prompt the user to enter their name, house and test result

· calculate the percentage of the mark out of 60
· display the pupil’s name and house, test result and the percentage.
Design Stage
The design stage may include the design of:

· forms

· pseudocode
· structure diagrams

· flowcharts.

In form design you may wish to have a ‘restricted choice’ with the use of radio buttons or check boxes to prevent human error from typing and to limit the possible inputs. The device the software will run on is important as for example you may be using a touch screen and therefore restricted choice may be most suitable.
User Interface needs to be suitable:
· user friendly

· straightforward navigation

· consistent design of element and text

· good visual layout.
User-interface design

The user interface is the part of a computer program that is visible to the user through which the user can interact with the software (the program). The design often is sketched by the designer, rather than typed.
User-interface design: example 1 continued
This is a user-interface design for a program that calculates a user’s weekly pay, using an event driven language such as Visual Basic.
[image: image1][image: image6.jpg]settotal
initally 0

setscore
initally 0.0

setanswer
initially False,

getscors
from keyboard,

round score to 2
decimal places

Add score to total

Gisplay "Do you wish
to enter another
score?

getanswer
from keyboard,

[image: image7.png]

[image: image8.png]Enter the length and breath and click button to calculate

Lengthin em

Breadth in cm

Calculate Area

[image: image9.png]

[image: image10.png]

[image: image11.jpg]

[image: image12.jpg]

User-interface design: example 2

This is a user-interface design for a program that calculates a user’s weekly pay using an event driven language such as Visual Basic.

	Enter how many hours you worked this week
	
	

	Enter how many hours you worked on Saturday
	
	

	Enter how many hours you worked on Sunday

Your pay this week is
	
	

User-interface design: example 3

There are different programming language environment you can use to create an interface and program code. Below is a user-interface design for the program to calculate a user’s weekly pay, using a text based language True Basic.

Examples of software design and development we will look at:
User-interface design: example 2

This is a user-interface design for a program to display the information in a list using an event driven language as such Visual Basic.

Examples of programs

The analysis and design of the software should take place before embarking on writing the instructions in your chosen software environment. In school we use Visual Basic 6.0 for coding the programs.
We will be using the following examples in these notes.

Example 1. A program is needed to calculate the area of a rectangle as a whole number.
Example 2. Calculate the volume of a swimming pool.
Example 3. Add up the length of the tracks on a CD.
Example 4. A program is required to enter a test mark and display a message if they have passed or not. The pass mark is 50.
Example 5. A program is needed to decide the cost of the postage of a parcel.
Example 6. A program is required to calculate the average of 5 numbers.
Example 7. A program is required to check a password has been entered correctly.
Analysis – Program specification question 1
Example 1.
Design, write and test a program to:

· ask/prompt the user to enter length and breadth

· calculate the area (rounded to nearest whole number)

· display the area.
Form – the form should be labelled

Pseudocode
- calculate area when button clicked

1. Initialise variables

2. Receive values from keyboard

3. Calculate the area

4. Display area
Refinements
1.1 Initialise variable length

1.2 Initialise variable breadth

1.3 Initialise variable area

2.1 ask user to enter length

2.2 ask user to enter breadth
3.1 set area = length * breadth

4.1 Display area (rounded to the nearest whole number) with a message
 Predefined function
Pseudocode

Top-down design methodology is being used to solve the problem. The steps are broken down into smaller steps. Those steps are further refined until a complete description is achieved and the subtasks are able to be coded. This is also called Stepwise Refinement.

Pseudocode is a text based design notation and is used to design a solution to a problem. Pseudocode is a natural language-based design methodology and is used to define an algorithm and the refinements. It is a kind of structured English for describing algorithms and is intended for human reading.
Instructions contained within Selection Constructs and Repetition Constructs should be indented to ease readability.
Pseudocode: Example 2

This algorithm calculates the volume of a swimming pool.

Algorithm

1. Ask user to enter dimensions of a swimming pool
2. Calculate volume of pool
3. Display message stating the volume of the pool
Refinement

1.1 Ask user to enter length of pool

1.2 Ask user to enter width of pool
1.3 Ask user to enter depth of pool
2.1 Volume is calculated as length * width * depth
3.1 Display “The volume of the pool is”, volume
Pseudocode: Example 3 – Traversing a 1D Arrays
This algorithm adds up the length of the tracks on a CD.

Algorithm

1. Initialise total length
2. Get valid number of tracks from user
3. Start fixed loop for each track
4. Get title and track length from user
5. Add track length to total
6. End fixed loop
7. Display track titles and track lengths
8. Display total length
Refinement

2.1 Start conditional loop, Repeat
2.2 Get number of tracks from user
2.3 If number of tracks is not valid
2.4 display error message
2.5 End If
2.6 Repeat until the number of tracks entered is
between 1 and 20 inclusive
4.1 Get track title and store in names array
4.2 Get track length and store in length array
5.1 Add track length to total length
7.1 Start Fixed loop for length of names array
7.2 Display “The name of track”, counter, “is”,

 track name
7.3 Display “The length of track”, counter, “is”,
 track length
7.4 End Fixed loop
8.1 Display “The total length of the tracks is”, total length
Other Representation at Design:
· Structure Diagram are a graphical representation indicating hierarchical and modular structure.
· Flowchart are a graphical representation indicating flow of data and control structures.
A structure diagram is a method of graphically representing the steps required to solve a problem. Structure diagrams must be read from the top down from left to right.
There are four types of notations used to represent the workings of the program:

Graphical Representation
Process: Notes a process such as a calculation.

 Loop
Problem may repeat an action a mixed number of times or repeat if conditions are met.

Selection
Problem may branch depending on the conditions met- representing a choice.
Predefined process Shows use of a predefined function or a procedure; steps to be broken down into smaller steps.
Structure diagrams and flowcharts give a visual and graphical representation of the sequence of process of the events.
Structure diagram: Example 1 Calculate area

Example 4. A program is required to enter a test mark and display a message if they have passed or not. The pass mark is 50.

Selection Example:

Pseudocode : Text Based Design Notation
1. Ask user to enter mark
2.
IF mark >= 50
3.

send message that they have passed to display
4.
ELSE
5.

send message that they have failed to display
6.
ENDIF
This example of Graphical Design notation is a structured diagram illustrating Selection.

[image: image2]
Example 5.
A program is needed to decide the cost of the postage of a parcel.

Selection Example:

Pseudocode : Text Based Design Notation

1. Received the parcel’s weight

2. IF parcel > 200
3.
 cost = £4.50
4. ELSE
5. If parcel> 100
6.
 cost = £2.50
7. ELSE
8. cost = £1.50
9. ENDIF
10.ENDIF
This example of Graphical Design notation is a structured diagram illustrating Selection.

Example 6.

A program is required to calculate the average of 5 numbers.
Iteration Example:

Pseudocode: Text Based Design Notation

1. For 5 times fixed loop
2. ask/receive number from keyboard
3. add number to total
4. Next times end fixed loop
5. calculate average
6. send average to display

This is an example of Graphical Design Notation with the structured chart illustrating Iteration

Flowcharts
A flowchart uses a variety of standard symbols with text to represent the order of events required to solve a problem. The symbols in a flowchart can be equated to programming constructs such as assignment (the task), selection and repetition. Flowcharts are useful in efficient coding, debugging and analysis. Although when program are complicated flowcharts maybe too complex to draw.
Flowchart symbols
Flow line – shows the direction or flow between symbols.

Terminal – represents the “start”and “end” of a problem.

Initialisation – used to show declaration of variables/arrays or assignment of an initial value.

Input/Output – shows data input and output.

Decision – problem may branch or repeat if conditions are met.

Process – notes a process such as a calculation.
Predefined process – shows use of a predefined function often with parameters.
On-page connector- may be used to split a flowchart to keep it on a single page.
Example 7. A program is required to check that a password has been entered correctly.
Iteration Example of Pseudocode: Text Based Design Notation
1. Initialise variable password

2. Conditional loop

2. ask user to enter password

3. IF password <> Storedpassword

4. display message to re-enter password
5. ENDIF
6. Repeat conditional Loop until password = storedpassword

7. Display message password is correct
This is an example of a Flowchart which is a graphical representation of an algorithm to illustrate repetition (Iteration).

Further Examples of Flowcharts
Program Specification The program has to check for 5 different people if they are old enough to rent a van.
Flowchart Example 1: Example of iteration and also selection.
[image: image3.jpg]sstage
initally 0
Set counter
initially 0

getage from
keyboard

increment counter

Gisplay “Not old
fenough yetto rent,

display "You
can renta van

Flowchart Example 2:

The program has to keep a running total of scores, until there are no more to be entered. Predefined function Round is used here (page 42).

[image: image4]
Flowchart Example 3:

Program specification – x-coordinate program.

The program has to ask the user to enter the number of steps they wish the coordinate to move along the x axis. The x- coordinate will be set to 5 at the start and value entered will be added to this. The new position will be displayed.
[image: image5.jpg]SetxCoord
initially 5

setmove
initially 0

position is
xCoord

get move from
keyboard

Implementation Stage
Variables

The program is resident in RAM while working – programs are loaded into RAM. Programs need to store values in RAM while it is working. RAM is made up of individual storage locations.
A variable is like a container that stores different values.

Lentils

Rice

Beans

A variable’s Name is one word and should be a meaningful identifier. The name chosen for the variable should indicate what they hold or do.

Character Variables

grade as char

The variable name is set up to only store a single character. A single character stored in one byte. Therefore variable name is declared as char. However there is no type char in Visual Basic.

String Variables

surname As String
The variable name is set up to hold text. Therefore variable name is declared as string.

Integer Variables

Dim length As Integer

Dim breadth As Integer

length = 0

breadth =0

Integer’s variables hold positive or negative whole numbers. For example length = 10, breadth =13

Variables can be used in calculations and therefore should be initialised to zero.

The variable may have been used previously in code and the last stored value may be sitting in the computer’s memory. Therefore setting the value to 0 will make sure the result in your program is correct.
Real Variables

price_eggs As Single

price _butter As Single

price_bread As Single

average As Single

In Visual Basic we declare a real number as single. Real numbers include all number whole numbers and fractions (numbers with a decimal point). For example the variable price_eggs = 1.39

Boolean Variables

Dim Correct As Boolean = False

Boolean variables hold two possible values true or false.

Expressions to Assign Values

You can assign a value to a variable. This is implemented through the Equals, =, assign element. The value of a variable will be stored in a storage location in RAM.

Example 1 assigning a value to a variable:

times=0

got_it_right = “False”

The value of times is zero. The value of got_it_right is “False”.
Example 2 assigning a value to a variable:

password = “bananas”

The variable password is assigned the value “bananas”. The value of password is bananas.

Traversing 1D arrays
An array is a data structure consisting of a collection of elements (values or variables). Traversing means to move through the data in the array.
Examples of 1D arrays in a Visual Basic environment

Dim book_title(10) as string

Dim author(10) as string

Dim price(10) as Single

Dim total_cost As single

The variable total_cost is a set of 10 data elements and is declared as type single as it holds a value with decimal places.

The array price is a set of 10 data elements and is declare as type single as it holds values with decimal places.

The array book_title is a set of 10 data elements and is declared as string because they hold text values.
Arrays are used to store and manipulate sets of data. Where declaring an array the size of the array and the data type is specified.
Example: An array called book_title. It has 3 data element and isof data type text.

DIM Book_title(3) as String
STORAGE LOCATIONS 1 2 and 3

Uglies
Thirteen Reasons Why
The Book Thief Divergent

 0
1
2
book_title(0) = “Uglies”
book_title (1) = “Thirteen Reasons Why”
book_title (2) = “The Book Thief Divergent”.

Each element in the array can be assigned a value eg book_title(3) = “The Book Thief Divergent” and can generally be treated in the same manner as a single variable.

Return values using Arithmetic Operations

Operations that can be used are and examples:
· multiply

· total_cost = price*quantity

· subtract

· amount = wage - expenses

· add

· total = number1 + number2+ number3

· Divide

· Average_mark = total_mark/4

· Exponentiation a ^ b is more commonly written ab
· 2^3 = 23 = 2 x 2 x 2 = 8

The programming construct using the equals sign (=) means the assignment of the answer to this calculation to the variable.
Expressions to Return Values

Arithmetic operations

You can add two values in an expression together with the + operator.

Dim answer As Integer

answer = 67 + 34
You can subtract values from another value in an expression with the – operator.

Dim answer As integer
answer = 32 - 12
Real numbers can be declared Single in Visual basic - numbers with decimal places. Real variables can be declared as Double, this allows up to 12 significant figures e.g. Dim answer as Double.

Multiplication use the * operator in Visual Basic as the following example demonstrates.
Dim answer As Single
answer = 45 * 55.23
Division use the / operator as the following example demonstrates.
Dim answer As Single
answer = 32 / 23

Exponentiation is a mathematical operation, written as bn, involving two numbers, the base b (the base is often referred to as the mantissa) and the exponent n. Exponentiation uses the ^ Operator, as the following example demonstrates.
Dim answer As Single
answer = 23 ^ 3

'The preceding statement sets answer to 12167 (the cube of 23, that is 23 x 23 x 23=12167)
Concatenate

Concatenation is the term used to describe the process of joining together separate strings and/or substrings. Such as, the separate strings of "Computing" and "Science" could be concatenated to give the single string of "ComputingScience".

Example of concatenation of strings

Two separate string variables called forename and surname. They could be concatenated and stored in a variable called fullname. The & symbol is used to represent concatenation.

The concatenation of forename and surname could be expressed as:

SET fullname TO forename & surname

Pseudocode

1. Declare variables

2. Ask forename

3. Ask surname

4. SET fullname TO forename & surname

5. Display fullname

If the forename variable held the characters "Tom" and the surname variable held the characters "Jones" the fullname variable would hold the characters "TomJones".

Visual Basic code: FullName program
Dim forename As String

Dim surname As String

Dim fullname As String

forename = InputBox("Enter forename")

surname = InputBox("Enter surname")

fullname = forename & surname ‘concatenation here
MsgBox ("Your full name is " & fullname)
Control structures

Control structures use following operators:

< means less than

> means greater than

≤ means less than or equal to

≥ means greater than or equal to

= means equals

<> means not equal to.

Examples of using Operators:
· > means greater than

· If user_number > target_number Then
· < means less than

· If score < 40 Then
· = means equal to

· Loop Until user_number = target_number
· <> not equal to

· If guess_password <> password Then
· >= means greater than and equal to

· If mark >= 50 Then
· <= means less than and equal to

· If mark <= 49 Then
Implementation of Control Structures

In any programming language there are three basic control structures:

· Sequence

· Selection

· Iteration

Sequence

Sequence is simply where a number of code lines follow on from each other in series order.

Example:

Name =InputBox(Please enter your name)

Age =Inputbox(Please enter your age”)

LblDidplay.Caption = “Hello” & Name & “you are” & Age & “years old
Selection

Selection is where a choice has to be made in a program. IF…Then… End IF or IF…Then…Else…End IF control structure would be used.
Example 1. Using IF…Then…End IF control construct along with a not equal to operator. If the correct password is not entered the user will not gain access.

If entered_password <> password Then

 MsgBox ("You do not have access to the system")

End If

Example 2. Using IF…Then…else…End IF control construct along with a not equal to operator. Valid will be set to true or false depending on whether the password was entered correctly or not.

If entered_password <> password Then

 MsgBox ("You do not have access to the system")

 Valid =False

Else

 MsgBox ("You have gained access to the system")

 Valid =TRUE

End If
Example 3. Using IF…Then…End IF control construct along with a greater than operator.

IF pupil mark > 49 Then
 MsgBox(“You have passed”)

End IF

Example 4. Using IF…Then…Else…End IF control construct

‘using a selection statement to check if they have passed or not.

IF pupil mark > 49 Then
 MsgBox(“You have passed”)

Else

Msgbox(“you have not passed”)

End IF

The condition pupil mark > 49 is known as a Selection Construct using a Simple Condition. A simple condition has only one statement.
Logical operators

The following Logical operators are used in condition statements:

AND means both statements must be true

OR means either statements must be true

NOT means statements must be false, that is not true.

Simple condition

Example using NOT
‘Using NOT in a selection construct. If the correct password is not entered the user will not gain access.
If Not entered_password = password Then

 MsgBox ("You do not have access")

End If
Selection Construct using Complex Condition

Complex conditions will use AND or OR logical operators.

Example 1 using AND

‘Using AND within a complex selection statement to allow only valid value for a percentage
IF percentage_mark >=0 AND percentage_mark <=100 Then

 MsgBox (“The mark you entered has been accepted”)

End IF
Example 2 using OR

‘Using OR within a complex selection statement to allow only valid “f” or “F” for Female
IF gender =”f” OR gender =”F” Then

 MsgBox (“You are a female”)

End IF
Simple and Complex Conditions

A condition is simply a statement or sum that is either true or false. A condition is met when it is true.

A simple condition only requires one statement. A statement can be a sum such as age >= 16. A complex condition requires two or more statements or sums. Examples shown below:
Conditional Simple condition

 IF age>= 16 THEN

PRINT”This person can leave school”

 ENDIF

The condition age >=16 is known as a simple condition.

When AND or OR is used then two or more conditions are being tested. This is a complex condition.

Complex Condition

IF age<=19 OR age >=13 THEN

MsgBox ”This person is a teenager”

ENDIF

The condition age<=19 OR age >=13 is known as a complex condition.

PS These types of example are when testing limits is important as 13 and 19 are acceptable data and errors can be made in coding and not allow them.

Iteration

Iteration is where a numbers of lines are repeated.

Two different methods to Loop:

· Fixed

· Conditional

Fixed Loop

A FOR loop is a fixed Loop, that is it repeats a set number of times.

Example 1. A FOR loop:

For line =1 to 100

 PicDisplay.print “I must always do my Computing homework”

Next line

This structure is used to control the number of times the program carries out the fixed loop. It will carry out this loop 100 times.

Example 2. Visual Basic code: using a FOR loop.
1. number_pupils = Inputbox(“Enter the number of pupils.”)

2. For counter =1 to number_pupils

3. name = Inputbox(“Please enter your name.”)

4. age = Inputbox(“Please enter your age.”)

5. lstPupilsDetails.Items.Add(name & “ “ & age)

6. total_age = total_age + age

7. Next counter
The variable number_of_pupils at line 1 is used to control the number of times a program carries out a fixed loop. This is a fixed loop structure control by the variable number_pupils. Line 3 and 4 prompts the user to enter their name and their age. Line 5 the name and age are displayed in the list box. Line 6 each time round the loop the variable age is added to the variable total_age – this is called running total. Line 7 adds 1 on to the counter and the program returns to line 2. This set of instructions are repeated until counter is greater than ‘number of pupils’ and the program will then stop running.
Conditional Loop
There are two different constructs which can be used for a conditional loop:

· Repeat…Until

· While…End While

A Repeat…Until construct is a bottom tested loop which means do the instructions inside the loop then test the condition.

A While…End While is a top tested loop, that is test the condition first then do the instructions inside the loop when the condition is true.

The loop instructions inside the While…End While cannot be executed at all unless condition is true, but the loop instructions inside Repeat…Until must always be executed once.

Therefore the condition in While…End While must be true for the loop to be executed, but the condition in Repeat…Until must be false for the loop to be executed (although remember Repeat…Until will always be executed once first before condition is tested).

Repeat…Until Condition

Visual Basic 6 uses DO LOOP is used for Repeat…Until. This is a conditional loop.
Example of a Repeat loop:

1. Repeat

2. Password = Inputbox(“Enter password.”)

3. Until password=”bananas”
The instruction line 2, enter password, will be carried out. At line 3 it will check to see if condition has been met. That is does password = “bananas”. If this condition is false that is the password entered is not bananas the instruction at line 2 will be carried out again. This continues until condition is true, that is password entered equals “bananas” and the loop will stop.

Visual Basic code for above problem: password program
Do

 Password = Inputbox(“Enter password.”)

Loop Until password=”bananas”

Example 2. A repeat loop allowing 3 attempts to get the password correct.

Dim attempts as integer
Dim password as string
attempts= attempts + 1

Do

 password – Inputbox(“Please enter your password.”)

 attempts = attempts +1

Loop Until password=”bananas” OR attempt = 3

The Do…Loop construct uses a complex condition (OR) to check the user’s password and ensure it is “bananas” or the user has entered a maximum password suggestion of 3 tries.
Example 3: Using a loop to select from array elements stored
1 Dim wage(10), as single

2 Dim average_wage(10) as single

3 Dim total_wage as single

4 Dim week, selection as integer

5 total_wage = 0

6 For week = 1 To 10

7 wage(week) = InputBox(“Enter your wage for week ”;week)

8 total_wage = total_wage + wage(week)

9 average_wage(week)=Math.round(total_wage/week)

10 Next

11 Do

12 selection=Inputbox(“Enter week number”)

13 Loop until selection < 1 OR selection >10

14 MsgBox(“Week “ & selection & “the wage was “ &

 wage (selection))

15 MsgBox(“Week “ & selection & “the average wage to

 date is “ & average_wage(selection))

Do..Loop line 11 to 13

The Do..Loop construction uses a complex condition to check the user’s selection and validates the variable selection is between 1 and 10, inclusive, which is the dimensions of the array.
Math.round(total_wage/week) line 9
The Math.Round function is used to make the make the value returned by the expression (total_wage/week) a whole number.
average_wage(week)=Math.round(total_wage/week)

Line 1 wage array has been declared as to hold an array data structure of 10 real numbers (decimal). Line 2 average_wage array has been declared as to hold an array data structure of 10 real numbers (decimal). Line 6 to line 10 there is fixed loop repeating 10 times where the week wage is entered for each week, the running total wage is calculated after each week and the average wage to date is stored in an array average_wage(week) each time. Lines 11 to 13, the user selects 1 to 10 inclusive. The variable selection will now store the value entered by the user. This value is used in lines 14 and 15 to select the correct wage and average wage within the correct position of the array to display.

Variables used for calculations and display should be initialised to zero.

The variable may have been used previously in code and the last stored value may be sitting in the computer’s memory. Therefore setting the value to 0 will make sure the results in your program are correct as the variable may have been used previously.

WHILE LOOP (Conditional Loop)
Example of a WHILE loop: Password Pseudocode

password = InputBox(“Enter your password”)

While password <>”bananas”

 Msgbox (“sorry your password is wrong, Please re-enter”)

End While

There is only one statement, password <>”bananas”. This known as a Simple Condition. When this condition is met the statement is true and the instructions will be carried out.
Visual Basic Code: Password Program

While password <>”bananas”
 Msgbox (“sorry your password is wrong, Please re-enter”)

Wend

Example 2. Visual Basic Code: Validate Mark Program

mark= InputBox("Please enter the mark between 0 and 100”)
While mark < 0 Or mark > 100

 mark= InputBox("Please re-enter the mark between 0 and 100”)
Wend

Here While…End While uses a Complex Condition as there are two statement. When either is true the condition is met and the instruction to re-enter will be carried out.
mark< 0 Or mark> 100 is known as a complex condition.

The Do…While loop uses complex condition mark < 0 Or mark > 100 to validate the data entry, making sure the user’s entry is in range that is between 0 and 100.

Visual Basic Code: Purchasing school books program

1 Dim book_title(10) as string

2 Dim times as integer

3 Dim book_selection as integer

4 Dim price(10) as single

5 Dim amount as integer

6 Dim total_cost as single

‘enter the book title and price for each of the ten books and store in arrays

7 For times = 1 to 10

8 book_title(times) = Inputbox(“Enter the title of the book”)

9 price(times) = Inputbox(“Enter the price of the book”)

10 Next times

11 book_selection = Inputbox(“Enter choice of book 1 to 10”)

12 Do while book_selection < 1 Or book_selection > 10

13 book_selection = Inputbox(“Enter a number bewteen 1 to 10”)

14 Loop

15 amount = Inputbox(“Enter number of copies”)

16 Total_cost = price(book_selection)* amount

17 Msgbox (“The books ” & book_title(book_selection) & “ costs £” & total-cost)
The Do loop uses a complex condition book_selection < 1 Or book_selection > 10 to validate the data entry, making sure that it is between 1 and 10 which is the dimensions of the arrays.

The total_cost is calculated by multiplying the contents of the position in the price array with the variable amount.
Pre-defined function (with parameters)

Each function has a name and takes a number of parameters, given in parentheses, that is, what is in the brackets. Each function also returns a value that can be used in a program.

A Pre-defined function is a sequence of instructions that is identified by name such as Round function. Functions are pre-written code that have been fully tested.

Numerical Functions

A function carries out an operation and returns a result. Functions are instructions/commands which are already built into the program environment.
Three Predefined functions are:

· Random

· Round

· Length
Random Function

RANDOM generates a random number.

Example of a Random

Dim RandomNumber as single
RandomNumber = Int (Rnd() * 10) +1

’This will return a random whole number between 1 and 10.
The Rnd function returns a value less than 1, but greater than or equal to zero.
Rnd () – the parameter value, in brackets, is not specified as it will be generated randomly.
Round Function

ROUND gives number to the nearest whole number.

Example 1 of Round

answer = ROUND(3.88) gives 4
Example 2 of Round
answer = ROUND(number_entered)
’If the parameter ‘number_entered’ was 3.17 it would return the value 3.

Parameters are the names of the information that we want to use in a function or procedure. The values passed in are called arguments.
Length Function

LENGTH can be used on a strings data type to calculate the number of characters in a string.

Example 1 of Length

Len(“Mary”) ‘this would return 4 as there are 4 letters in the word Mary.
Example 2 of Length
Len(first_name)
’If the parameter ‘first_name’ value was “Joe” this would return the 3.

Example 3 of Length
Len(Pin_Num)
’This would return the total number of digit of the parameter ‘pin_num’.
Algorithm Specifications
The follow algorithm specifications are required to be learned and understood for the SQA EXAM.
An algorithm is a sequence of instructions that can be used to solve a problem. Algorithms which are in common use in programming are known as Standard Algorithms.

Standard Algorithms

There are three Standard Algorithms we need to learn.
These are:

· input validation — checking that input is acceptable

· running total within a loop — adding up a list of values

· traversing a 1D array — accessing each element of an array from first to last. Traversing means to move through the data in the array.
Input Validation
To validate data is to check it is allowable and sensible where the correct data type is used, integer or real or string etc…, within the correct limits example >=0 and <=30.
A range check is a way of validating data such as a teenager age range is 13 to 19. Validating the accuracy of input may be required such as password or a code number.

Input Validation examples
Input Validation: example 1 (while loop)

This program is used to obtain a value between 10 and 20 inclusive.
1. RECEIVE number FROM KEYBOARD
2. WHILE number < 10 OR number > 20 DO
3.
SEND “Error, please enter again” TO
4.
DISPLAY
5.
RECEIVE number FROM KEYBOARD
6. END WHILE
Input Validation: example 2 (until loop)

This program is used to obtain a value between 10 and 20 inclusive.

1. REPEAT
2. RECEIVE number FROM KEYBOARD
3. IF number < 10 OR number > 20 THEN
4. SEND “Error, please enter again” TO DISPLAY
5. END IF
6. LOOP UNTIL number >= 10 AND number <= 20
Running total within a loop
Running total within a loop: example 1 (fixed loop)

This program is used to calculate the sum of a known number of values entered by the user one at a time therefore a fixed loop is used (FOR).
1. DECLARE total INITIALLY 0
2. FOR loop FROM 1 TO 10 DO

3.

RECEIVE number

4.
SET total TO total + number
5. END FOR
Running total within a loop: example 2 (fixed loop)

Calculate the average rainfall – calculate total then the average.
1 DECLARE total INITIALLY 0

2 FOR loop FROM 1 to 7 DO

3
RECEIVE rainfall FROM KEYBOARD
4
SET total to total + rainfall

5 END LOOP

7 SET average to total/7

8 SEND (“Average weekly rainfall” average) to DISPLAY
Running total within a loop: example 3 (conditional loop)

This program is used to calculate the sum of an unknown number of values entered by the user one at a time.

1. DECLARE total INITIALLY 0
2. REPEAT
3.
RECEIVE number FROM KEYBOARD
4.
SET total TO total + number
5.
SEND “Do you wish to enter another value”
TO DISPLAY
6.
RECEIVE choice FROM KEYBOARD
7. LOOP UNTIL choice = ”no”
Traversing a 1D array
Traversing a 1D array: example 1 (Fixed loop)

This program is using a loop to access each element of an array, for the purposes of processing the data in the array.

1. DECLARE allScores INITIALLY [12,34,23,54,32,67,26,23]
2. FOR counter FROM 0 TO 7 DO
3.

IF allScores[counter] >= 50 THEN
4.

SEND “Great Score” &
allScores[counter] TO DISPLAY

5. END IF
6. END FOR
Traversing a 1D array: example 2 (fixed ‘for each’ loop with running total included)

This program is using a loop to access each element of an array, for the purposes of processing the data in the array.

1. DECLARE allScores INITIALLY [12,34,23,54,32,67,26,23]
2. DECLARE total INITIALLY 0
3. DECLARE counter INITIALLY 0
4. FOR EACH FROM allScores DO
5.
SET total TO total + allScores[counter]
6.
SET counter TO counter + 1
7.END FOR
The Golden rules that apply here are:
Once you do something once you should never have to do it again.

AND

Efficiency techniques must be involved so that software uses minimum amounts of computer resources.
Computer software is designed to solve a problem and the design should achieve an efficient solution before a program is created. Efficiency means minimum amount of resource being used such as RAM and processor time.
To make a program efficient we should use: loops for repetition,
1D arrays to store a list of similar values in a single variable name, and construct efficient selection statements that use nested IF constructs so less comparisons are carried out.
Repetition

LOOK at the number of lines of code below you need to write. The computer processor would have to process all these lines of code and the RAM (memory) would need to hold these line of code when you’re running the program. What a waste of resources!

This program finds the average of 10 numbers.

1. DECLARE total INITIALLY 0
2. RECEIVE number FROM KEYBOARD
3. SET total TO total + number
4. RECEIVE number FROM KEYBOARD
5. SET total TO total + number
6. RECEIVE number FROM KEYBOARD
7. SET total TO total + number
8. RECEIVE number FROM KEYBOARD
9. SET total TO total + number
10. RECEIVE number FROM KEYBOARD
11. SET total TO total + number
12. RECEIVE number FROM KEYBOARD
13. SET total TO total + number
14. RECEIVE number FROM KEYBOARD
15. SET total TO total + number
16. RECEIVE number FROM KEYBOARD
17. SET total TO total + number
18. RECEIVE number FROM KEYBOARD
19. SET total TO total + number
20. SET average = total / 10
21. Display average
A TOTAL of 21 LINES of CODE WOW! – using much memory and processor time. This is not efficient.
LET’S use an efficient construct and follow the golden rules above. We’ll Loop instead using the Repeat construct.
1. DECLARE variables and INITIAISE to 0
2. REPEAT 10 TIMES
3. RECEIVE number FROM KEYBOARD
4. SET total TO total + number
5. END REPEAT
6. SET average = total / 10
 7. Display average
1.1 Declare total As Integer

1.2 Declare number As Integer

1.3 Declare counter As Integer

1.4 Declare average As decimal

1.4 Set total = 0

1.5 Set number = 0

1.7 Set average = 0

Less lines of code required - minimum amount of resources less memory used to stored instructions while executing the program and less processor time used to carry out the instructions therefore efficient.
1D arrays

1D arrays will allow a one variable to store a list of variable values which can be used when required. Again replication is used here making the software efficient by use of minimum resources – minimum use of the processor time to carry out instruction and minimum RAM to store the program that is in use.
Firstly, let’s look at part of a design which is not efficient as it is not using a 1D array.

1. DECLARE total INITIALLY 0
2. RECEIVE number1 FROM KEYBOARD
3. RECEIVE number2 FROM KEYBOARD
4. RECEIVE number3 FROM KEYBOARD
5. RECEIVE number4 FROM KEYBOARD
6. RECEIVE number5 FROM KEYBOARD
7. RECEIVE number6 FROM KEYBOARD
8. RECEIVE number7 FROM KEYBOARD
9. RECEIVE number8 FROM KEYBOARD
10. RECEIVE number9 FROM KEYBOARD
11. RECEIVE number10 FROM KEYBOARD
12. SET total TO number1 + number2 + number3 + number4 + number5 + number 6 + number7 + number8 +number9 + number10
13. SET average TO total / 10
14. SEND average TO display
Total number of line of code required to be stored in memory and then processed is 14 WOW! Not efficient.
Let’s look at part of a design which is efficient, using a 1D array.

1. DECLARE number INITIALLY []
2. DECLARE total INITIALLY 0
3. FOR counter FROM 1 TO 10 DO
4.

RECEIVE number[counter)]
5.

SET total TO total + number[counter]
6. END FOR
7. SET average TO total/10
8. SEND average TO display
Minimum instructions here therefore minimum memory and processor time used - efficient code.

Selection
A Selection Construct can be used. However a careful consideration of various possibilities needs to take place as some constructs are more efficient than others.

Example 1
Example 2

	This uses four IF constructs, one after another, with the use of complex conditional statements.

	
	This uses nested IF constructs with simple conditional statements. Other programming languages may use a CASE, ELIF or ELSEIF statement.

	IF mark < 50 THEN
 SET grade TO D
END IF
IF mark>=50 AND mark<=59 THEN
 SET grade TO C
END IF
IF mark>=60 AND mark<=69 THEN
 SET grade TO B
END IF
IF mark>=70 THEN
 SET grade TO A
END IF

	
	IF mark>=70 THEN
SET grade=A
ELSE
 IF mark>=60 THEN
 SET grade=B
 ELSE
 IF mark>=50 THEN
 SET grade=C
 ELSE
 SET grade=D
 END IF
 END IF END IF

	This program always carries out four comparisons, regardless of the values stored in mark.
	
	This program carries out either one, two or three comparisons, depending on the values stored in the mark. This nested approach is more efficient.

Logical operators

Logical operators can be useful when creating complex conditions, rather than using multiple simple conditions.

This program uses two simple conditional statements.

IF X > 4 THEN
 IF Y < 6 THEN
 SET quadrant TO 2
 END IF
END IF
This program uses one complex conditional statement.

IF X > 4 AND Y < 6 THEN
 SET quadrant TO 2
END IF
Testing

Bugs/errors may be found in programing code. A hardcopy of a program may be obtained. The hardcopy is a formatted printout of the code. Using the formatted listing of code the programmer steps through each line of logic in the code to attempt to find the errors. This is called a structured walkthrough.
There are 3 types of errors:
Syntax Errors
Grammar, spelling and sentence structure, incorrect punctuation, missing a letter, character or forgetting to include inverted commas/speech marks are common examples of syntax errors. Syntax errors are mistakes in the way that the program code is written and a program can only be executed if it is syntactically correct. The rules of the language have been broken.
Execution Errors

Sometimes called a runtime error, execution errors only become evident during run time. Execution errors occur when an instruction is formed correctly but returns an unexpected result when it is being executed by the processor. An execution error occurs when a program is asked to do something that it cannot, resulting in a ‘crash’. The widely used example of a run time error is asking a program to divide by 0.

Another important one is the wrong datatype being entered.
Example

Dim no_of_items as integer.

The user then enters the value “six” in text rather than 6. This is an execution error (run time error) and the error message will say “Invalid data type”.
The code contains no syntax or logic errors but when it runs it can't perform the task that it has been programmed to carry out. Another example is where an attempt is made to access an item in an array which does not exist for example item 11 in an array with only ten elements.

File handling can also result in execution errors, most often when an attempt is made to write to a file that does not exist.

Another example, attempting to delete a user who does not exist in the in a data file will generate an execution error. A further example, if you submit an instruction to create a user that already exists in the data file.

Logic Errors

The sense of the code. A logic error is a bug in a program that causes it to operate incorrectly, but not crash. An error in the logic of the code such as using ˂ instead of ˃ or AND instead of OR. The program will execute the code but will produce unexpected results. Logic errors are usually resolved by carrying out a dry run, using a trace table or setting breakpoints to help identify the section of code that contains the logic error.

Questions to ask: Is the code carrying out the correct instructions? Is the code carrying out instructions in the correct order?
Software Development Environments
Software development environments can help identify syntax errors.
· syntax highlighting

· colour coded variable names

· automatic indentation

· bookmarking/flags errors

· comments on errors

Test Data

There are 3 types of test:
Normal test data – acceptable data, no unexpected results
Extreme - test data which tests the boundary limits
Exceptions - test data which is not allowed which is outside the limits. To test that the software can react to unexpected inputs in an effective way, without crashing.
Test data plan is produced in order to know the expected results in advance, so that they can be checked against the actual results.

In the example below the length and breadth cannot be more than 20cm.
	Tests
	Data entered
	Expected result
	Actual result

	Normal
	Length = 5

Breadth = 8
	Accepted 5

Accepted 8

Area =40

	Accepted 5

Accepted 8

Area = 40

	Extreme
	Length = 20 Breadth = 20
	Accepted 20

Accepted 20
	Accepted 20

Accepted 20

	
	
	Area = 400
	Area = 400

	Exceptions

	Length = -13

Length = 21

Breadth = -8

Breadth =21
	Incorrect re-enter

Incorrect re-enter

Incorrect re-enter

Incorrect re-enter
	Incorrect re-enter

Incorrect re-enter

 Incorrect re-enter

Incorrect re-enter

Evaluation
Evaluation of a software solution in terms of:
1. Fitness for purpose

2. Efficient use of coding constructs

3. Robustness

4. Readability: internal commentary, meaningful identifiers, indentation and white space.
1. Fitness for purpose
This stage of the software development process is to ensure the program meets the software specification.

· Does the program do everything it was supposed to do, that is the program allows all data inputs, carries out all processes and outputs the correct results in a suitable format?
· Does the program meet all the requirements in the program specification?

· Does the program produce the correct results?

2. Efficient use of coding constructs
Efficiency is to ensure the minimum amount of resources are used by a program to perform a specific function. Therefore for a program should use minimum memory (RAM) and minimum processing time of the processor when running.
A computer program can be written in many ways to solve a problem. Although each solution can achieve the same result by using the constructs available in a programming language, the programmer should be trying to achieve the most efficient solution.

How to create efficient code

The use of repetition can greatly reduce the number of lines of code that have to be held in RAM and then processed. Repetition such as using ‘Repeat…Until’ command in code instead of writing out the same line many times. Other examples of repetition constructs are: For…Next, While …End While.
Traversing 1D arrays allows the same variable name to be used to store a list of similar variables values. This means that repetition can be used to easily store values that may be required later. Less memory (RAM) is being used therefore more efficient.
When using the Selection Construct nested IF may be more efficient as the program can carry out less comparisons. (Look at selection examples Page 51).
Logic operations
When using logical operations use a complex condition rather than writing separate simple conditions, one line after the other, giving less instructions will produce more efficient code.

2. Robustness

Robustness is the ability of a computer system to cope with errors during execution and cope with erroneous input. Input validation is required for the program to cope with erroneous input. The software should react to unexpected inputs in an effective way, without crashing.
3. Readability
The readability of the program is important. This will help find errors (bugs) in code more easily. Readability will support future maintenance as instructions requiring amendments will be found more easily within the program. Therefore readability is require for ease of editing and maintenance.
For a program to be readable:

1. Meaningful identifiers should be used.

2. There should be internal commentary, explaining what each section of the code does. - Internal commentary will help maintenance of code in the future.
3. There should be Indentation of code within structures and white space (blank lines).
Meaningful Identifiers
An identifier is a name used for any part of a program, such as the name of a subprogram or a variable name.

A meaningful variable name use one or more words to describe it such as a pizza_topping.

A variable name used in a program identifies a storage location in the computer’s memory.

A programmer is less likely to make a mistake in a program using words rather than single letters for variable names.

Internal Commentary
Internal commentary is a comment explaining what the instruction(s) will do. It is inside the program itself. It has no effect on the program itself. Internal commentary helps you understand what the code is doing throughout the program.
A comment statement such as:

‘Declare the variable length to hold a whole number
Indentation and White Space
A structured listing is a program listing which uses indentations and therefore it is formatted text. Program instructions inside structures such as loop (repeat) constructs and selection constructs would be indented (moved inside the structure).
Indenting program structures can help to show where each of the program control structures begins and ends and makes it easier to read and see and find mistakes. The example below shows the contents of the For…Next construct indented.
For counter = 1 to 5
 money = inputbox(“How much money did you raise”)
 totalmoney = totalmoney + money
Next

MsgBox ("Total raised = " & Format(total_money, "currency"))
White space is the empty lines left unmarked between the lines of code. White space is similar to indentation in that is it is used to help make it clear where code is placed. However, white space is used to separate different sections of code so that it is easier to see each part. The example above shows white space before the message box.
Textbox

Name = txtHouse

Font + times New Roman

Size = 12

Label

Name = lblName

Font + times New Roman

Size = 12

Enter your name

Enter your house

Enter the mark you achieved in the test

The percentage is

Click to start

Command button

Name = cmdStart

Font = times New Roman

Size = 12

Form

Name = frmAverageMark

Label

Name = lblHours

Font + times New Roman

Size = 12

Texbox

Name = txtHours

Font = times New Roman

Size = 12

Click to start

Form

Name = frmWeekPay

Command button

Name = cmdStart

Font = times New Roman

Size = 12

Enter how many hours you worked this week	___________

Enter how many hours you worked on Saturday	___________

Enter how many hours you worked on Sunday	___________

Your pay this week is __________

Listbox

Name = lstTimesTable

Click to start

Form

Name = frmTimesTable

Command button

Name = cmdStart

Font = times New Roman

Size = 12

Textbox

Name =txtLength

Font =Times New Roman

Size = 12

Command Button

Name =cmdCalcArea

Font = Times New Roman

Size=12

Label

Name =lblBreadth

Font =Times New Roman

Size = 12

Form

Name=frmCalculateArea

Colour=blue

PROBLEM: Calculate the area

Get length, breadth from keyboard

Calculate the area

Display area

PROBLEM – find out if passed or failed

Get mark

Is mark >= 50

Display message passed

Display message failed

Yes

No

PROBLEM - Calculate correct postage for a parcel

Is parcel heavier than 200g

Get weight of parcel

No

Yes

Is parcel heavier than 100g

Cost = £4.50

No

Yes

Cost = £1.50

Cost = £2.50

PROBLEM – Find the average of 5 numbers

Display average

Calculate average

Repeat 5 times

Add number to total

Get number

Start

Set variable password initially = “ ”

Get password from keyboard

password <> storedpasssword?

Yes

Display “incorrect password, re-enter.”

No

password = storedpasssword?

No

Yes

Display “password accepted”

End

37

