
SCHOLAR Study Guide

Higher Computing Science
Unit 3:
Database design and development

Authored by:
Ian King (Kelso High School)

Mark Tennant (Community School of Auchterarder)

Charlie Love (CompEdNet)

Andy McSwan (Knox Academy)

Reviewed by:
Jeremy Scott (George Heriot’s School)

Previously authored by:
Jennifer Wilson (Denny High School)

Heriot-Watt University

Edinburgh EH14 4AS, United Kingdom.

First published 2018 by Heriot-Watt University.

This edition published in 2018 by Heriot-Watt University SCHOLAR.

Copyright © 2018 SCHOLAR Forum.

Members of the SCHOLAR Forum may reproduce this publication in whole or in part for educational
purposes within their establishment providing that no profit accrues at any stage, Any other use of the
materials is governed by the general copyright statement that follows.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without written permission from the publisher.

Heriot-Watt University accepts no responsibility or liability whatsoever with regard to the information
contained in this study guide.

Distributed by the SCHOLAR Forum.

SCHOLAR Study Guide Higher Computing Science: Unit 3

Higher Computing Science Course Code: C816 76

ISBN 978-1-911057-28-4

Print Production and Fulfilment in UK by Print Trail www.printtrail.com

Acknowledgements
Thanks are due to the members of Heriot-Watt University's SCHOLAR team who planned and created these
materials, and to the many colleagues who reviewed the content.

We would like to acknowledge the assistance of the education authorities, colleges, teachers and students
who contributed to the SCHOLAR programme and who evaluated these materials.

Grateful acknowledgement is made for permission to use the following material in the SCHOLAR
programme:

The Scottish Qualifications Authority for permission to use Past Papers assessments.

The Scottish Government for financial support.

The content of this Study Guide is aligned to the Scottish Qualifications Authority (SQA) curriculum.

All brand names, product names, logos and related devices are used for identification purposes only and are
trademarks, registered trademarks or service marks of their respective holders.

v

Contents

1 Analysis 1
1.1 Introduction . 3
1.2 End users . 3
1.3 Functional requirements . 5
1.4 Learning points . 7
1.5 End of topic test . 8

2 Design 9
2.1 Introduction . 11
2.2 The relational model . 23
2.3 Relationships . 28
2.4 Entity-occurrence diagrams . 33
2.5 Compound keys . 40
2.6 Entity relationship diagrams . 41
2.7 Solutions to queries . 44
2.8 Learning points . 51
2.9 End of topic test . 52

3 Implementation 53
3.1 Application software . 55
3.2 Introduction . 59
3.3 Example database . 72
3.4 SQL Wildcards . 74
3.5 Table and column aliases . 76
3.6 Using sub-queries . 77
3.7 SQL aggregate functions (MIN, MAX, AVG, SUM, COUNT) 80
3.8 Computed values . 82
3.9 GROUP BY . 83
3.10 ORDER BY . 85
3.11 Learning points . 86
3.12 End of topic test . 87

4 Testing and evaluation 93
4.1 Testing SQL queries . 95
4.2 Evaluating SQL queries . 100
4.3 Learning points . 101
4.4 End of topic test . 102

5 End of unit test 105

Glossary 119

vi CONTENTS

Answers to questions and activities 122

© HERIOT-WATT UNIVERSITY

1

Topic 1

Analysis

Contents
1.1 Introduction . 3

1.2 End users . 3

1.2.1 End user requirements . 4

1.3 Functional requirements . 5

1.3.1 Types of functional requirements . 5

1.3.2 Identifying functional requirements . 6

1.3.3 Example functional requirements . 6

1.4 Learning points . 7

1.5 End of topic test . 8

2 TOPIC 1. ANALYSIS

Prerequisites

From your studies at National 5 you should already know about:

• end user requirements;

• functional requirements.

Learning objective

By the end of this topic you should be able to:

• identify and define the end user from a description of a development project;

• explain the term functional requirements;

• define a number of functional requirements from the following areas:

◦ interface requirements;

◦ business requirements;

◦ legal requirements;

◦ security requirements.

© HERIOT-WATT UNIVERSITY

TOPIC 1. ANALYSIS 3

1.1 Introduction

Data is anything in a form that can be used by a computer. A program is a set of instructions that set
out how a computer should perform a particular task or tasks, so data is everything else that isn't a
program!

A database is used to store data. A database is an organised store of information so that the data
can be easily accessed, managed and updated.

Databases can be found in most aspects of modern life: mobile phones, cars software systems,
online shopping, bus ticketing systems and supermarket checkouts all depend on database systems
to function.

There are many different types of database management systems (DBMS). These are the tools
that allow you to manage the data you store. These tools adopt different methods to structure the
data: flat-file, distributed, object-oriented and so on; however, the method used in Higher Computing
Science is relational.

Later in this unit, you will use a relational database management system (RDBMS) to execute
queries to generate answer tables and manage your data.

1.2 End users

Read the following scenario for a database system.

Bob's Super Sweets is a sweet shop. The owner, Bob, has decided that he needs a database
system to manage all the orders that the shop receives via emails and telephone calls. The
staff in the shop will be able to enter the details of a customer (or select them if already in the
system) and create the order for the customer. Once the order is created, the staff can add the
sweets and the weight ordered to the order. The system will then calculate the cost of the order
and print out an invoice to send to the customer, with the order, for payment.

Who do you think the end user is? Is it Bob, the customer or the staff in the shop?

When identifying the end user, you have to consider who will actually use the system. The end user
is different from the user who supports/maintains the system. The end user, typically, won't have
technical knowledge of the system. Also, the end user is usually not the person or company paying
for the system (known as the system owner).

In the preceding scenario, the end users are the staff in the shop. They will use the system and the
functional requirements of the system will need to be created to meet their needs.

Go onlineActivity: End user scenarios

Read the following scenarios for database systems and identify the end users.

Q1: Alex Vardy owns a business that trades in used vehicles. He wants to have a database
system that will allow the staff in his showroom to enter the details of vehicles that are bought
and sold. When a vehicle is bought, the seller will be entered into the database with the
details of the vehicle bought by the business. Similarly, when a vehicle is sold, the details of

© HERIOT-WATT UNIVERSITY

4 TOPIC 1. ANALYSIS

the sale and who the buyer is will be entered. The system will create all of the paperwork
associated with the trading in vehicles.

Identify the end user(s).

a) The seller of the vehicle.
b) Alex Vardy, the owner of the business.
c) The buyer of a vehicle.
d) The showroom staff.

. .

Q2: Amir Kartal owns a flat and wants a database system as part of his web site for renting
out the flat to holiday makers. He will be able to view and edit the bookings made online and
print out who has booked the flat and for when. He will use the printouts to make sure that
a cleaner is booked to clean the flat after each holidaymaker leaves. Holidaymakers will be
able to use the system and book the flat online. They can also print out details of their stay.

Identify the end user(s).

a) Both Amir and the holidaymakers.
b) Amir.
c) The holiday makers.
d) The cleaners.

. .

Q3: A library has decided to set up a database system to allow visitors to search for books
and locate them on the shelves within the library. The system is to enhance the service
provided by the librarians who work there by allowing visitors to self-serve rather than wait to
speak with a librarian.

Identify the end users.

a) The library owners.
b) The librarians.
c) Visitors to the library
d) Visitors and librarians.

1.2.1 End user requirements

Systems are designed to meet the needs of the end users as well as the requirements of the
business/organisation or person commissioning the system. The system should allow end users to
carry out the required functions in the most efficient manner.

End users normally have a specific set of skills or experience with technology. This experience
will be considered when the interface for the system is designed and developed to ensure that the
system is user friendly, reducing the number of user interactions so that the system can be used
efficiently and presenting the user with the required commands/options in an accessible way.

These 'interface requirements' are just one element of the functional requirements of the system.

© HERIOT-WATT UNIVERSITY

TOPIC 1. ANALYSIS 5

1.3 Functional requirements

All systems have functional and non-functional requirements. Functional requirements specify
exactly what the system should do while non-functional requirements describe how the system
works.

Example : Functional requirements example

• 'Calculate and display the number of cars sold for a specific range of dates' is a
functional requirement - it details something that the system must do.

• 'The system will be reliable and available online 99.9% of the time' is a non-functional
requirement - it details how the system should perform but not something that it should
do.

When analysing a database problem in Higher Computing Science, you are only required to identify
the functional requirements of the solution to be developed.

1.3.1 Types of functional requirements

Functional requirements define specific actions that the solution must perform. There are many
possible aspects of the solution that functional requirements may detail. Some of these are detailed
as follows.

Interface requirements

What are the user interface requirements for the database system? These can be detailed as
functional requirements based on the data entry and output required.

Example : Interface requirements example

The system must provide the main menu options:

• manage or add new customers;

• manage or create new orders;

• customer reports (select from available customers on file).

Business requirements

Business requirements determine the business rules applied within the system.

Example : Business requirements example

The system must calculate VAT on all sales using the current VAT rate. The system will have
settings screen which will allow the current VAT rate to be modified and saved.

Legal requirements

All systems are required to meet the relevant laws for the data they hold. This means that rules,
such as the General Data Protection Regulation (GDPR), must be applied as required.

© HERIOT-WATT UNIVERSITY

6 TOPIC 1. ANALYSIS

Example : Legal requirements example

The system must timestamp all personal data stored and provide a maintenance screen which
will allow data to be deleted after a defined retention period. This period can be modified via
a settings screen.

Security requirements

All systems should have appropriate security requirements applied to them. These requirements
ensure that data is kept securely and that users have the appropriate level of access to the system.

Example : Security requirements example

The system must have three levels of access:

1. Level 1 will allow read only access to order and customer data.

2. Level 2 will allow the modification and input of data for all areas of the system.

3. Level 3 will allow access to all aspects of the system including setup/configuration
screens and user management.

1.3.2 Identifying functional requirements

Functional requirements are identified by a systems analyst as part of the analysis of the system.
They will be added to the requirements specification or the product backlog depending on
whether an iterative development process or an agile one has been adopted.

The process of identifying functional requirements is the same for each approach. The systems
analyst will complete the following sequence of activities.

• End user or system owner request a requirement: The analyst receives the requirement
request.

• Analyse: the systems analyst examines the requirement; why it is needed and what is
required to deliver it. The analyst will have to ensure that the requirement is fully understood
before it can be documented. This may include observation of existing operations, reviewing
documents produced by existing processes or modelling the requirement to ensure that it is
correctly understood.

• Use case: a use case is a list of actions or events detailing the interactions, between an end
user and the system, to achieve the functional requirement. It is a way to document what must
happen.

• Incorporate: once the functional requirement is documented, it can be added to the
requirements specification or product backlog for implementation.

1.3.3 Example functional requirements

A systems analyst has prepared the following partial functional requirements for Bob's Sweet Shop
system. This is written as a number of simple use cases.

• The system must have an interface to access the following options: manage customers,

© HERIOT-WATT UNIVERSITY

TOPIC 1. ANALYSIS 7

manage orders, manage stock, manage users, modify settings.

• The manage customers options must allow search, viewing, creation or modification of
customer information.

• The manage orders option must allow search, viewing, creation or modification of orders.

• There must be a print option for each order that will generate an invoice for the order.

• When creating or editing an order, it will be possible to select a stock item and enter the weight
of that item ordered. The system must calculate the value for each line in an order using the
stock item price and the weight.

• The system will calculate the total cost of an order and include any additional charges such as
VAT and delivery.

1.4 Learning points

Summary

You should now know that:

• end users can be identified and defined from a description of a development project;

• the term functional requirements can be explained;

• a number of functional requirements from the following areas can be defined:

◦ interface requirements;

◦ business requirements;

◦ legal requirements;

◦ security requirements.

© HERIOT-WATT UNIVERSITY

8 TOPIC 1. ANALYSIS

1.5 End of topic test

Go onlineEnd of Topic 1 test

Q4: Which of the following is not a functional requirement?

a) The system must allow a password to be set with a minimum of eight characters.
b) The system must allow a password to be set with at least one upper-case character, one

number and one text symbol.
c) The system will be protected by an authentication system to prevent unauthorised access.
d) The system must allow a user to login to the system using a username and password.

. .

Q5: Who is normally responsible for identifying and documenting the functional
requirements?

a) End user
b) Programmer
c) Systems analyst
d) System owner

. .

Q6: How are functional requirements different from non-functional requirements?

a) Functional and non-functional requirements explain the quality requirements of system.
Non-functional requirements state which parts of the system should be measured and the
functional requirements detail how each part should be measured.

b) Functional requirements define what the system must do. Non-functional requirements
define how the system should behave.

c) Functional requirements detail how the modules of code in the system should be linked
to each other. Non-functional requirements detail how the documentation will be written.

d) Functional requirements are defined by the system owner only whereas non-functional
requirements can be suggested by anyone associated with the system.

© HERIOT-WATT UNIVERSITY

9

Topic 2

Design

Contents
2.1 Introduction . 11

2.1.1 Entities and attributes . 11

2.1.2 Relationships . 11

2.1.3 Primary and foreign keys . 13

2.1.4 Attribute types and size . 15

2.1.5 Validation . 17

2.1.6 Data dictionary . 18

2.1.7 Entity relationship diagrams . 20

2.1.8 Design a solution to a query . 21

2.2 The relational model . 23

2.3 Relationships . 28

2.3.1 One-to-one . 28

2.3.2 Many-to-many . 30

2.4 Entity-occurrence diagrams . 33

2.5 Compound keys . 40

2.6 Entity relationship diagrams . 41

2.7 Solutions to queries . 44

2.8 Learning points . 51

2.9 End of topic test . 52

10 TOPIC 2. DESIGN

Prerequisites

From your studies at National 5 you should already know how to:

• use simple entity relationship diagrams, making use of a one-to-many relationship
between entities and showing their attributes;

• construct a data dictionary and know its purpose;

• identify attribute types including text, number, date, time and Boolean and attribute sizes
where required;

• specify validation rules for data;

• design a query based on two tables, fields, search criteria and sort order.

Learning objective

By the end of this topic you should be able to:

• create and describe entity-relationship diagrams using three or more entities;

• exemplify relationships and their cardinality as one-to-one, one-to-many or many-to-
many;

• use entity-occurrence diagrams to identify and present the relationship between two
entities;

• describe, and explain through examples, a compound key;

• describe, and explain through examples, a data dictionary with three or more entities
including attribute names, types, size and validation;

• design, create and explain a design of solution to a query making use of tables, queries,
fields, search criteria, sort order, calculations and grouping.

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 11

2.1 Introduction

In Higher Computing Science we use the relational database model. The model details how data
is to be organised, how it can be accessed and how it can be manipulated. This topic deals with
how solutions to database problems are designed. This introduction is a recap of what you will have
covered as part of the National 5 course.

2.1.1 Entities and attributes

During the design of a database we refer to entities and attributes.

An entity is something that exists - it is something that we want to store information about. It could
be a physical thing (such as a book or a person) or it could be something abstract (such as a
reservation at a restaurant or a payment for rent on a home).

A collection of entities (all the students in a school, for example) is called an entity set.

Attributes are the information that we hold about an entity. For example, a student in school is an
entity and the attributes that may be stored for a student are: first name, middle name, last name,
date of birth, address, postcode and so on.

Figure 2.1: Student entity with attributes

2.1.2 Relationships

Relationships show how two entities are related to each other. You should be familiar with the
relationship type one-to-many.

For example, one doctor will have many registered patients, but each patient will have only one
registered doctor.

© HERIOT-WATT UNIVERSITY

12 TOPIC 2. DESIGN

Table 2.1: One-to-many relationship

This is a one-to-many relationship. An entity on one side can be associated with multiple entities
on the other side BUT the entities on the other side are only associated with one entity opposite
them, i.e Dr James Brown has two registered patients: Miss Louise Flower and Mr Nick Spencer
AND Miss Louise Flower is only registered with ONE doctor, Dr James Brown.

A further example would be accounts on a social media platform and posts made. Each account
can create one or more posts but each post is created by only one account.

Table 2.2: Another one-to-many relationship

There are other types of relationship which we will cover later in this topic.

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 13

2.1.3 Primary and foreign keys

When an entity follows the rules for the relational model, it should have a primary key. This is a
value which is unique for the entity. In the example of social media posts which follows, each user
has a unique UserID and each post has a unique PostID.

UserID is the primary key of the User entity. PostId is the primary key of the Post entity.

Table 2.3: One-to-many relationship with primary and foreign keys

When listing the attributes of an entity we use an underline to indicate the primary key.

A foreign key is a primary key value from one entity included in a related entity. The purpose of the
foreign key is to establish the relationship between the two entities. A foreign key is typically shown
in notation using an asterisk *.

In the preceding example, the primary key of User, UserID has a related foreign key in the Post
entity. The two entities are now linked by primary/foreign key values that they have in common.

The posts for 'WhoRYou' can be found by using the unique value of UserID for this user, 72620,
and looking for the same value in the foreign key within the posts table. In the example above, this
shows that there are three posts by this user.

© HERIOT-WATT UNIVERSITY

14 TOPIC 2. DESIGN

Go onlineActivity: Primary and foreign keys

How a foreign key is used to relate data in separate entities:

Two separate entities:

Student�num Fname Sname

20001 Gerry Sutherland

20002 Fiona McGhee

20003 Sally Fultness

School�num Town Telephone

Jura High Bute 01432 123456

Coll Academy Ballimartine 01352 878787

'School�code keys are added to each entity:

Student�num Fname Sname School�code

20001 Gerry Sutherland A

20002 Fiona McGhee B

20003 Sally Fultness A

School�code School�num Town Telephone

A Jura High Bute 01432 123456

B Coll Academy Ballimartine 01352 878787

Key A relationship:

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 15

Key B relationship:

School�code is the foreign key in the upper entity and is used in the lower entity as a primary
key providing a link between the two entities.

2.1.4 Attribute types and size

Attributes hold specific types of data. For the National 5 and Higher Computing Science courses
these types are defined as follows:

• text: Any data that is represented using a string of text. For example, the attribute lastname
would normally be stored as text;

• number: Any data that is represented using number values. These can be integer or decimal
values. Floating point representation may also be used to store very large or very small
numbers;

• date: Any data that is of date format. For example: date of birth: '24/09/2003' is a date format.
It is worth noting that many SQL software solutions display dates in the format YYYY/MM/DD.
In this case, the date above would be '2003/09/24';

© HERIOT-WATT UNIVERSITY

16 TOPIC 2. DESIGN

• time: Data about the time is stored in a time type. This can be more than the time of day e.g.
16:00:00, it can also hold an amount of time (duration) e.g. 561:01:02 (this is 561 hours, 1
minute and 2 seconds);

• Boolean: Attributes which are Boolean are either True or False.

Go onlineActivity: Attribute types and size

Q1: Select the data types that you would use to store the following:

Attribute Example Data type

Surname Toner

First name Geraldo

Postcode TD7 0EG

SQA candidate number 2311447853

Enrollment fee paid £27.50

All documents received True

Enrolment date 23/03/14

Course begins at 19:30

Qualification credit value 24

Data types:

• Text

• Number

• Date

• Time

• Boolean

Size of attributes

Where attributes are of the text type, it is normal to specify their size as the maximum possible
characters for these attributes. This can be done in a data dictionary and shown as the data type
followed by a number of characters, e.g. text (16). This would define the attribute as being text and
a maximum of 16 characters.

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 17

2.1.5 Validation

Validation is used to check that the data entered for an attribute is what is expected. There are four
types of validation that can be applied to an attribute.

1. Presence check: this validation rule ensures that there is a value allocated in the attribute.
When an attribute has no value assigned to it, it will have a value of Null. Null is a technical
term meaning no value is available. It is not the same as zero or empty text "" (a string with
no characters in it). Often the word "Required" is entered in a data dictionary to show that a
presence check is needed.

2. Restricted choice: validation of this type limits the values for an attribute to a selection of
predefined options. For example: Jackets are available in sizes S, M, L, XL, XXL. These are
the only allowed values for the attribute. Validation rules for this can be written as "Limit to: S,
M, L, XL, XXL" or may be written as "Look up: S, M, X, XL, XXL" in a data dictionary.

3. Field length: Attributes of type text can be limited so that they must be a given number of
characters. There could be a minimum number of acceptable characters (e.g. your PIN must
be at least 4 characters), a maximum number of characters (e.g. the maximum length of your
message is 280 characters) or a mix of both (e.g. you username must be more than 8 and
less than 16 characters long).

4. Range: the value of an attribute can be limited to values between a maximum and a minimum,
giving a range of possible values. For example, an attribute could be validated to ensure that
it was between 0 and 10 or between 0.01 and 0.99 or between -25 and 25.

This isn't limited to just attributes of the type number but can also be applied to attributes of type
text. For example, limiting values from >= A and <= E would allow the values A, B, C, D and E to
be used.

Go onlineActivity: Validation

Choose the correct type of presence check for the attributes in each of the following questions.

Q2: UK children's shoes are available in sizes 1 to 11. Assume that integers are required
for data input.

Attribute: Shoesizes

Example: 10

Validation: ?

a) Presence check
b) Restricted Choice
c) Field Length
d) Range

. .

© HERIOT-WATT UNIVERSITY

18 TOPIC 2. DESIGN

Q3: A password for a web site must be 10 or more characters long.

Attribute: Password

Example: "Secretpassword10"

Validation: ?

a) Presence check
b) Restricted Choice
c) Field Length
d) Range

. .

Q4: Users must accept the terms and conditions.

Attribute: TermsCheckBox

Example: ⊗
Validation: ?

a) Presence check
b) Restricted Choice
c) Field Length
d) Range

. .

Q5: A voting response allows users to return "Yes","No" or "Don't Know".

Attribute: Vote

Example: "Yes"

Validation: ?

a) Presence check
b) Restricted Choice
c) Field Length
d) Range

2.1.6 Data dictionary

A data dictionary is data about data. It is the detailed design for one or more entities in a system. A
data dictionary is laid out as a table containing the definition of each attribute (and entity). Consider
this data dictionary for a system for booking a swimming pool.

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 19

Table: Customer

CustomerID CustomerName CustomerAddress CustomerPhone

1001 Raymond Boyce
13 Western St,
Dunfermline, KY11
7TQ

01929 928311

1002 Edgar Codd
17 Queen St,
Dunfermline, KY12
3EA

01929 827191

1003 Larry Ellison
The Lake House,
Carnegie, KY12 8YH 01929 883919

1004 Safra Catz
92a Viewfield,
Dunfermline, KY11
9UA

01929 667818

Table: Booking

BookingID BookingTime BookingDate CustomerID

2910 11:00 27/07/2018 1001

2912 12:30 27/07/2018 1002

2913 14:00 28/07/2018 1003

2918 12:00 28/07/2018 1004

A data dictionary for this system:

Entity Name: Customer

Attribute Primary/Foreign Key Data Validation

CustomerID Primary Key Number

CustomerName Text(70)

CustomerAddress Text(475)

CustomerPhone Text(22)

Entity Name: Booking

Attribute Primary/Foreign Key Data Validation

BookingID Primary Key Number

BookingTime Time

BookingDate Date

CustomerID Foreign Key Number
Lookup from
Customer

© HERIOT-WATT UNIVERSITY

20 TOPIC 2. DESIGN

2.1.7 Entity relationship diagrams

The Entity relationship diagram (ERD) illustrates the structure of any database. It provides a
method of illustrating entity sets, relationships and attributes. Entity relationship diagrams make use
of the following symbols.

•

A rectangle is used to represent each entity set. Remember, an entity set is a collection of
entities. The name of the entity set is entered inside the rectangle to identify it. The name
must never be a plural, it must always be a singular e.g. person rather than people.

•

The relationship between the two entity sets. Relationships illustrate how two entities sets
share information. A short phrase is written above the line to describe the relationship. The
'crows feet' show the many side of the relationship.

•

Attributes can be added to the ERD as ovals. The name of the attribute is entered inside the
oval.

•

If an attribute is the primary key or part of the primary key for the entities in the entity set then
its name is underlined inside the oval.

A simple entity relationship diagram for the swimming pool system shown in the previous data
dictionary would be:

With the attributes added it would be:

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 21

2.1.8 Design a solution to a query

Previously you will have designed solutions to simple queries that access one or two tables. The
design of a query requires that you make use of:

• multiple tables;

• fields;

• search criteria;

• sort order.

A query, when it runs, produces an answer table. The answer table is a collection of the data that
matches the requirements of the query.

Multiple tables

An entity set is implemented as a table in a database. Each row of the table represents an instance
of an entity.

Example

Table: artist

artist�id firstname lastname

0001 gary barlow

0002 robbie williams

0003 cheryl cole

0004 dolly parton

Table: album

album�id title artist�id*

01 Since I saw you last 0001

02 Open road 0001

03 Escapology 0002

04 Better day 0004

05 Swing when you are winning 0002

© HERIOT-WATT UNIVERSITY

22 TOPIC 2. DESIGN

Fields

The attributes of an entity are implemented as fields in the database. These are the columns of the
tables. The table artist in the example has the fields artist�id, firstname and lastname and the table
album has the fields album�id, title and artist�id.

Search criteria

When constructing a query, we often need to select specific results based on the values of fields.
Search criteria are applied to select the values that are required for the solution.

For example: firstname="gary", title="Better day", title = "*you*" (where * is a wildcard which means
any value).

Sort order

The answer table produced by a query can be sorted based on values held in the columns. For
example, the album table is sorted on album�id, ascending.

Answer tables can sorted on one, two or more fields in ascending or descending orders.

For example, this answer table is sorted on:

year descending, comic�id ascending, hero�name ascending

Year comic�id hero�name

2017 6171 Aqua matrix

2017 6171 Super mole

2017 8109 Jules Volt

2017 8109 Rocket

2016 5261 Bear Meteor

2016 5261 No Capes

2016 5278 X-field

2015 9188 Superflea

2015 9188 Transfirma

Representing query design

To represent the design of a query the following layout can be used. Each element of the query is
presented as follows.

Tables

Fields

Search criteria

Sort order

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 23

A database contains the following tables (as you saw earlier).

Table: Customer

CustomerID CustomerName CustomerAddress CustomerPhone

1001 Raymond Boyce
13 Western St,
Dunfermline, KY11
7TQ

01929 928311

1002 Edgar Codd
17 Queen St,
Dunfermline, KY12
3EA

01929 827191

1003 Larry Ellison
The Lake House,
Carnegie, KY12 8YH 01929 883919

1004 Safra Catz
92a Viewfield,
Dunfermline, KY11
9UA

01929 667818

Table: Booking

BookingID BookingTime BookingDate CustomerID

2910 11:00 27/07/2018 1001

2912 12:30 27/07/2018 1002

2913 14:00 28/07/2018 1002

2918 12:00 28/07/2018 1004

A query is required to display the name, booking time, booking date and phone number for all the
people from post codes starting with 'KY11' who have a booking. The results (the answer table)
should be sorted on Booking Date and Booking Time, both ascending.

The query design would be:

Tables Customer, Booking

Fields CustomerName, BookingTime, BookingDate, CustomerPhone

Search criteria
CustomerAddress = "*KY11*", Customer.CustomerID =
Booking.CustomerID

Sort order BookingDate ASC, BookingTime ASC

2.2 The relational model

A relational database is a database which contains more than one table. The tables are linked
together by using primary and foreign keys.

Advantages of a relational database

Relational databases were developed to avoid unnecessary duplication of data in the database.

© HERIOT-WATT UNIVERSITY

24 TOPIC 2. DESIGN

Let's look at a Flat-file database to see what we mean by unnecessary duplication:

Library loans:

Borrower
No

Borrower
Name

Borrower
Address

Borrower
Phone

Book No Title Author
Loaned
Out

Due Back

1001
Edgar
Codd

12 High
Street,
Scholar

01234
985443

F1301
Wuthering
Heights

Bronte,
C

12 Jan 11 Feb

1002
Raymond
Boyce

6 Castle
View,
Scholar

01234
983458

F1301
Wuthering
Heights

Bronte,
C

12 Feb 11 Mar

1001
Edgar
Codd

12 High
Street,
Scholar

01234
985443

F1109
To Kill a
Mocking-
bird

Lee, H 14 Jan 13 Feb

As you can see, all the fields about the borrower (Borrower No, Name, Address. . .) have to be
inserted for each book the lender loans, and the same is also true of the book details each time it is
loaned out. This is unnecessary duplication, and can cause problems:

• it is time consuming for the database operator (this is a simplified example - a real borrower
may need many fields);

• mistakes can be made (can you see any in the table above?);

• what if the borrower leaves the library? The General Data Protection Regulation would mean
the library would have to remove the borrower's details from the database - how would this
work if they have loaned hundreds of books!

• what if you want to add book details to the library database - ideally you would need someone
to borrow the book, so the record is complete.

Let's take a look at a relational version of this database now:

Borrower:

BorrowerNo BorrowerName BorrowerAddress BorrowerPhone

1001 Edgar Codd 12 High Street,
Scholarville

01234 985443

1002 Raymond Boyce 6 Castle View,
Scholarville

01234 983458

Book:

BookNo Title Author

F1301 Wuthering Heights Bronte, C

F1109 To Kill a Mockingbird Lee, H

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 25

Loan:

LoanID BorrowerNo* BookNo* LoanedOut LoanedOut

10292 1001 F1301 12 Jan 11 Feb

10293 1002 F1301 12 Feb 11 Mar

10294 1001 F1109 14 Jan 13 Feb

As you can see now:

• all the information about books is stored only once;

• all the information about borrowers is stored only once;

• all the information about loans is stored only once.

Each loan is linked (related) by the BookNo and BorrowerNo to the record in each table. This solves
all of the above problems (bar the mistake problem; however, at least if an operator enters the wrong
value for some book or borrower data, it only needs to be changed once and all loan records will be
correct).

In the relational model, tables of data are valid as long as they meet the following rules.

1. Every table in a database must have a unique name.

2. Every column in a table must have a unique name within that table.

3. All entries in a column must be of the same kind.

4. The ordering of columns in a table is not significant.

5. Each row in a table must be unique. Duplicate rows are not allowed in a table.

6. The order of the rows is not important in the table.

7. Each cell in the table (the intersection of a column and a row) must contain only one value.
Multiple entries are not allowed in a cell.

Columns and column characteristics

Each column in a table must have a unique name. Two or more tables within the same database
may have columns with the same name.

When the same column name appears in more than one table and tables that contain that column
are referred to at the same time then we use the table name to distinguish between the two columns.
For example, we would refer to the BorrowerNo column in the above two relations as:

Borrower.BorrowerNo and Loan.BorrowerNo

Each column in a table must draw the data that it contains from the same domain. This means that
each column must contain data of the same nature. This is easier to understand if we look at this
incorrect snapshot of part of the borrower table from the library example.

© HERIOT-WATT UNIVERSITY

26 TOPIC 2. DESIGN

Table 2.4: Column from student table

BorrowName

Sally Burton

John Low

0821 928192

Sandy Ogston

Brian Wilson

Sally Smith

In this example, the column is intended to store the borrower name. However, the data entered for
the third borrower is a phone number. Clearly, the data in this column is not entirely from same
domain (i.e. not all borrower names) and, therefore, is invalid.

Rows and row characteristics

Each row in a table must be unique. This means that the combination of values in the columns of
one row cannot be found elsewhere in the table. Again, this is much easier to understand if we look
at an example from the library database:

Table 2.5: Duplicate rows from the Borrower table

Borrower No Borrower Name Borrower Address Borrower Phone

1001 Edgar Codd 12 High Street,
Scholar

01234 985443

1002 Raymond Boyce 6 Castle View, Scholar 01234 983458

1003 Safra Catz 92a Viewfield, Scholar 01929 667818

1001 Edgar Codd 12 High Street,
Scholar

01234 985443

Here we see four rows from an incorrect snapshot of the Borrower table. Each cell (row/column
intersection) of the first and fourth rows contains the same data. In fact, the fourth row is an exact
duplicate of the first. The fourth row is not required because the data it stores is already held in the
first row. If the fourth row was held in the table then the table would be invalid because each row
would not then be unique. Now look at this other example:

Table 2.6: Correct rows from the Borrower table

Borrower No Borrower Name Borrower Address Borrower Phone

1001 Edgar Codd 12 High Street,
Scholar

01234 985443

1002 Raymond Boyce 6 Castle View, Scholar 01234 983458

1003 Safra Catz 92a Viewfield, Scholar 01929 667818

1004 Edgar Codd 12 High Street,
Scholar

01234 985443

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 27

Your first reaction when you look at this sample of rows is that it is invalid. However, the values for
BorrowerNo for rows one and four are different and, therefore, each row is unique. This example
tells us there are two different people called 'Edgar Codd' at the same address with the same phone
number!

Cells

Each cell in a table must contain only one piece of data. A cell is the point where a column and a
row meet.

Figure 2.2: Example of a cell in a table

The value of the cell in Figure 2.6 is 'Susan'. Every cell in the above table contains only one value.
Multi-value cells are not allowed so the following table would be invalid.

Table 2.7: A table with invalid rows

Borrower
No

Borrower
Name

Borrower
Address

Borrower
Phone

Book No Title Author
Loaned
Out

Due
Back

1001
Edgar
Codd

12 High
Street,
Scholar

01234
985443

F1301
F1109

Wuthering
Heights
To Kill a
Mocking-
bird

Bronte, C
Lee, H

12 Jan
14 Jan

11 Feb
13 Feb

1002
Raymond
Boyce

6 Castle
View,
Scholar

01234
983458

F1301
F1109

Wuthering
Heights
To Kill a
Mocking-
bird

Bronte, C
Lee, H

12 Feb
14 Feb

11 Mar
14 Mar

The preceding example has multiple values in cells in the BookNo, Title, Author, LoanedOut and
DueBack columns. These multi-valued cells are not permitted in a relational database. Only single-
valued cells are allowed.

Go onlineQuiz: Introduction

Q6: Describe two features of a column in a relational database.

. .

© HERIOT-WATT UNIVERSITY

28 TOPIC 2. DESIGN

Q7: Explain the difference between a flat file database and a relational database.

. .

Q8: Are multi-valued cells allowed in a relational database?

a) Yes
b) No

2.3 Relationships

In addition to the one-to-many relationship you are familiar with from National 5, there are two other
types of relationship which can exist between entities.

The type of a relationship is called the cardinality of the relationship. In an examination, you may
be asked to identify the cardinality of a relationship.

There are three cardinalities.

1. One-to-many

2. One-to-one

3. Many-to-many

You should already be able to describe and use one-to-many.

2.3.1 One-to-one

A one-to-one relationship specifies that for one entity there is only one other corresponding entity.

Example Students in Lochussie High School are each allocated a locker to use during their
time at school. This locker is not shared and can only be used by the pupil to whom it has
been allocated.

StudentID StudentName RegisterClass LockerNum LockerType

43781
Jennifer
Brown

4A 232C Vanguard

57842
Amir
Anderson

3E 234C Guardian

23423 Scott Andrew 6F 728D Athletic

23426
Wendy
Alexander

2F 483B Vanguard

One-to-one relationship

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 29

For every student there is one locker and for every locker there is one student. It is also acceptable
for a student to not have a locker or for a locker to not be allocated.

In an ERD (entity relationship diagram) this is represented as 1:1.

Figure 2.3: One-to-one ERD

Example Each local secondary school has a head teacher, and each head teacher is head
teacher at only one school.

One-to-one relationship

In an ERD (entity relationship diagram) this is represented as 1:1.

Figure 2.4: One-to-one relationship

© HERIOT-WATT UNIVERSITY

30 TOPIC 2. DESIGN

2.3.2 Many-to-many

With many-to-many relationships, either side of the relationship can have none, one or many links.

Example Teachers and students in a school are being recorded using an ERD. A teacher
can have many students and a student can have many teachers.

An example of a many-to-many relationship

In an ERD (entity relationship diagram) this is represented as M:N.

Figure 2.5: Many-to-many relationship

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 31

Go onlineActivity: Many-to-many (1)

Here a student sits as many as four exams and each exam is sat by as many as nine students.

This can be represented in an ERD as a many-to-many relationship.

Many-to-many relationship

© HERIOT-WATT UNIVERSITY

32 TOPIC 2. DESIGN

Go onlineActivity: Many-to-many (2)

Q9: Select the relationship between each pair of entities from the options provided.

Entity 1 Entity 2 Relationship

School Head Teacher

Teacher Course

Classroom Desk

School Swimming pool

Pupil Exam

Options: 1-to-1, 1-to-many, many-to-many.

Go onlineQuiz: Relationships

Q10: Explain each of these terms.

1. Entity

2. Attribute

3. Relationship

. .

Q11: An online ordering system needs to be designed. It will always have at least one
customer and each customer may place multiple orders.

Complete the following ERD to describe such a system by selecting the correct relationship
symbol between the entities:

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 33

2.4 Entity-occurrence diagrams

The first step in constructing a model of any system is to examine the entities and relationships. It
is relatively easy to identify the entities involved. Each collection of entities is an entity set.

Each of these entity sets will deal with a specific collection of entities: Borrower, Loan, Book, etc.

All entities in an entity set must have the same attributes and each attribute must have a specific
domain. Remember, a domain is the set of permitted values for an attribute and therefore defines
what the attribute can and cannot store.

Entity occurrence diagrams are achieved by looking at specific relationship occurrences and
linking entity occurrences with lines, one line for each occurrence of the relationship.

Creating an E/R occurrence diagram

Entity-Relationship occurrence modelling is a technique which helps to identify the relationship
between two entities. In order to successfully use E/R occurrence modelling, a systems analyst
must have a full understanding of the system being analysed, and sample data with which to work.

Identify the entities and their primary keys

The first process is to identify a primary key for each entity. In this case, Borrower has a primary key
of BorrowerNo, Loan has a primary key of LoanID.

Create a list of primary key values

With the primary keys for each entity decided the next step is to write down the primary key values
so that the E/R occurrence diagram can be constructed.

Table 2.8: Primary key values

BorrowerID LoanID

1001 10292

1002 10293

10294

In the preceding table, each primary value from the two sample Borrowers from the Borrower entity
and the Loan table have been listed.

Link Primary Keys

Once the list of the primary key values is completed lines are drawn to illustrate how the values link
together. This line is one occurrence of the relationship between the two entities. Look at the first
record for borrower '1001' in the Borrower data in the sample, and look at the value for LoanID. On
the E/R occurrence diagram we draw a line between the BorrowerID value and the LoanID value.

Table 2.9: Starting to create an entity occurrence diagram

BorrowerID LoanID

1001 10292

1002 10293

10294

This line indicates one 'link' between the Borrower entity set and the Loan entity set. To complete

© HERIOT-WATT UNIVERSITY

34 TOPIC 2. DESIGN

the E/R occurrence diagram we add 'links' for all the remaining records from the sample data. To
put it another way, we draw a line to represent each instance of the relationship between the two
entities sets.

Table 2.10: Entity occurrence diagram

BorrowerID LoanID

1001 10292

1002 10293

10294

What does this tell us about the relationship between Borrower and Loan? Each Borrower has one
or more Loans linked to it and each Loan has one Borrower linked to it.

One Borrower has many Loans and one Loan has one Borrower. The relationship between Borrower
and Loan is one-to-many. The pattern of the lines in the entity-relationship occurrence diagram can
be used to identify the nature of the relationship between two entities sets.

When an E/R occurrence diagram is created, one of three patterns will appear in the lines. There
is one pattern for each of the three relationship cardinalities: one-to-one, one-to-many and many-
to-many. Each of the following examples demonstrates the pattern that appears for each of the
relationships.

Entity Occurrence Diagram - One-To-One Relationship

A company has a policy of allocating each employee a computer workstation connected to the
company network. Each computer has a unique name and each employee has a unique payroll
number. Following entity-relationship occurrence diagram was created:

Table 2.11: Entity Occurrence Diagram, one-to-one relationship

Computer Name Payroll Number

Paris 030/829112

Washington 040/881929

London 040/546781

Geneva 030/112000

Edinburgh 050/444878

One Computer Name has one Payroll Number and one Payroll Number has one Computer Name.
This is, therefore, an example of a one-to-one relationship.

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 35

Entity Occurrence Diagram - One-To-Many Relationship

Courses at Westhill University each have a unique course code. Students at the university each
have a unique Student ID. Students are only allowed to register for one course. At least 20 students
enrol in each course at the university. The following entity-relationship occurrence diagram was
created:

Table 2.12: Entity Occurrence Diagram, one-to-many relationship

Each course has more than one student and each student has one course. This is, therefore, a
one-to-many relationship.

Entity Occurrence Diagram - Many-To-Many Relationship

Food suppliers have numerous outlets and outlets have numerous food suppliers. So, for example,
Beefy Soup Co. sell soup to Big Store, AmazonBasics and Ocado Online. Big Store buys soup from
Beefy Soup Co., Baters Ltd., Duck Soup and Brampbells.

Following entity-relationship occurrence diagram was created:

Table 2.13: Entity Occurrence Diagram, many-to-many relationship

Each food supplier has one or more outlets and each outlet has one or more food suppliers. This is,
therefore, a many-to-many relationship.

More on Entity Occurrence Diagrams

In some cases, you may not be presented with sample data to create your Entity Occurrence
Diagram. You may have to use information about the system to understand the data using dummy
values.

For example: You are told that each rugby club has one president and that each president belongs
to only one rugby club. Each rugby club has many members. A member can only belong to one
club.

© HERIOT-WATT UNIVERSITY

36 TOPIC 2. DESIGN

Figure 2.6: Entity Occurrence Diagram - dummy data

As shown, you would lay this out as having three entity sets and a number of values within them.
Then join the values together following the logic for the system.

Figure 2.7: Entity Occurrence Diagram - dummy data - solution

This shows that the relationship between President and Club is 1:1 (one-to-one) and that the
relationship between club and member is 1:M (one-to-many).

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 37

Activity: Entity Occurrence Diagrams

An online ordering system makes use of four entities. These are Customer, Order, OrderLine
and Product.

Three example orders with the associated data are shown.

Order 1

© HERIOT-WATT UNIVERSITY

38 TOPIC 2. DESIGN

Order 2

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 39

Order 3

Q12: Create an entity occurrence diagram from the information above. You will be required to
identify suitable primary keys and their values and link these to understand the relationships
between the four entities.

Create your diagram and then list the relationships between each of the entities.

© HERIOT-WATT UNIVERSITY

40 TOPIC 2. DESIGN

2.5 Compound keys

In some relations there is no one column that can act as a primary key. However, each row is unique
because of the data values in the columns.

Example

Suit Value Number of times played

Hearts Ace 5

Diamonds 2 4

Spades 3 3

Clubs 5 8

Clubs Jack 5

In the example, no single column contains a set of unique values.

• Cards can be any one of four suits so the suit is not unique.

• There are four cards in each deck with the same value (four aces, four kings etc.).

• The Number of times played attribute won't be unique as it is a count of the number of times
the card is played and cards will quite likely be played the same number of times.

This means that none of the columns can serve as a primary key on its own, but what if we used
two columns together? Using the Suit and Value columns together as a key would give a unique
value for each card.

This combination of columns is our primary key. This is an example of a compound key.

When writing the attributes, both would be underlined:

Suit

Value

Number of times played

More than one attribute is underlined; therefore you know that this is a compound key.

It is often the case that several columns will have to be used to create a compound primary key.
Let's look at this example of people coming to visit properties to buy.

property�id client�name potential�buyer�no potential�buyer�name date�of�viewing

P221 Smith 282 Jones 17.07.2018

P221 Smith 982 Perkins 19.07.2018

P221 Smith 983 Patel 29.07.2018

P221 Smith 282 Jones 29.07.2018

P226 Parker 282 Jones 29.07.2018

P226 Parker 225 Mitchell 23.08.2018

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 41

There are no unique columns:

• because a property can be viewed more than once, property�id and client�name are repeated;

• because one potential buyer can view one or more properties on several different occasions,
potential�buyer�no and potential�buyer�name can appear more than once;

• because any house can be visited more than once on the same day, the date�of�viewing is
repeated. Note that the same person cannot view the same house twice on the same day.

This means that none of the columns can serve as a primary key on its own. However, a combination
of property�id, potential�buyer�no and date�of�viewing is unique. This is because the combination
of values in each of these three columns is never the same.

Go onlineQuiz: Compound keys

Q13: Examine the following table and select a suitable compound primary key.

competitionID position points gamerID

1 1 1500 9023

1 2 7000 1873

1 3 1000 1009

2 1 12000 0293

2 2 6000 3742

2 3 1500 1645

3 1 30000 1873

3 2 22000 9834

3 3 15000 1873

3 4 5000 1842

2.6 Entity relationship diagrams

From your studies at National 5, you will be familiar with creating ERDs with two entities and a
single relationship. The problems that you will encounter at Higher level are more complex and
will typically involve three or more entities and multiple relationships of different cardinalities (i.e.
one-to-one, one-to-many, and many-to-many).

Example

ParcelMe is a delivery company with a company-wide database system. Shipped items are
the heart of the ParcelMe product tracking system. Shipped items can be characterised by
item number (unique), weight, dimensions, insurance amount, destination, and final delivery

© HERIOT-WATT UNIVERSITY

42 TOPIC 2. DESIGN

date. Shipped items are received into the ParcelMe system at a Retail Center. Retail Centers
have a type, uniqueID, and address. Shipped items make their way to their destination via
one or more standard ParcelMe transportation events (i.e., flights, vehicle deliveries). These
transportation events consist of a unique scheduleNumber, a type (e.g, flight, vehicle), and a
deliveryRoute.

The ERD for the example system would be:

Figure 2.8: ParcelMe Entity Relationship Diagram

In the diagram, many Shipped Items are shipped through many Transportation Events and one
Retail Centre receives many Shipped Items.

Quiz: Entity relationship diagrams

Create ERDs for the following scenarios.

Q14: A company stores information about employees, departments and the children of
employees. The employees details held are employeeID, salary and phone number. Each
department has a department number and a budget. Children of employees uses a ChildID,
Child Name and Age. Each employee works in only one department and assume that only
one parent works at the company.

. .

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 43

Q15: A computer game has teams of players. Each player has a playerID, name and a skill
level. Each player has access to an inventory. This inventory includes items to use in the
game. Each item has a unique itemID, a name and a cost. Teams play matches against the
computer and, for each match, there is a unique MatchID, a score, a match level and a match
map. Teams have a team name and teamID. The inventory has a compound primary key of
playerID and itemID.

. .

Q16: Here is an example of information from a database system.

© HERIOT-WATT UNIVERSITY

44 TOPIC 2. DESIGN

Complete this entity relationship diagram using the labels provided.

a) customer

b) order

c) orderline

d) product

2.7 Solutions to queries

At Higher level you will be expected to design solutions to a query making use of the following:

• tables and queries;

• fields;

• search criteria;

• sort order;

• calculations;

• grouping.

Tables and queries

From National 5 you will be aware of using tables as the source of the data for your queries. When
a query runs on tables it will produce an answer table. Answer tables can also be used as the basis
for a query. You can perform a query on the result of a query!

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 45

Example The Federation of Esports has a relational database that consists of three linked
tables, storing data on solo players, tournaments and tournament results.

Extracts from these tables are shown as follows.

tournament:

tournamentID country place eventDate

1 UK Liverpool 13/05/2017

2 France Paris 29/08/2017

3 USA New York 08/09/2017

4 Germany Berlin 12/03/2018
.

player:

playerID forename surname rating playercountry

1645 Barry Jones 1756 USA

1873 Jenny McKay 1260 Australia

2093 Ahmed Ali 1934 UK
.

result:

tournamentID position prizemoney playerID*

1 1 15000 1645

1 2 7000 1873

1 3 1000 2093

2 1 12000 1873

2 2 6000 2093

2 3 1500 2093

3 1 30000 1873

3 2 22000 2093

3 3 15000 0293
.

© HERIOT-WATT UNIVERSITY

46 TOPIC 2. DESIGN

A query is designed to show all the results for "Jenny Mckay"

Query1

Tables(s) and/or query player, result

Fields and/or calculations position, prizemoney

Search criteria
forename = "Jenny", surname = "Mckay",
player.playerid = result.playerid

Grouping

Sort order

The answer table generated by this query would then be used to find the largest sum of prize
money that Jenny Mckay won when she finished in first in a tournament (position 1).

Query2

Tables(s) and/or query [All results for Jenny Mckay]

Fields and/or calculations MAX(prizemoney)

Search criteria position = 1

Grouping

Sort order

This query acts on the results of Query 1 to produce a second answer table where the position
= 1.

Fields

Fields in a database table are the columns of data. Each column has a unique name within the
table. When designing a query you need to consider the fields that will appear in the answer table.
There may be other fields that you use for search criteria, grouping and sort order but these are the
fields (the columns) which are displayed in the answer table generated by the query.

Search criteria

Search criteria are field values that are used to reduce the scope of a query and select the required
data. In the example above the search criteria for Query 1 are forename = "Jenny", surname =
"Mckay", player.playerid = result.playerid. In an SQL query these would be joined together using an
AND operator (or some other operator depending on the data that the query should generate). The
criteria 'player.playerid = result.playerid' is the criteria that is used to link the two tables in the query.

We will cover more on the detail of Search Criteria in the next topic.

Sort order

The answer table produced by a query can be sorted based on values held in the columns. Answer
tables can sorted on one, two or more fields in ascending or descending orders.

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 47

Example

The following answer table is sorted on: year descending, comic�id ascending, hero�name
ascending

Year comic�id hero�name

2017 6171 Aqua matrix

2017 6171 Super mole

2017 8109 Jules Volt

2017 8109 Rocket

2016 5261 Bear Meteor

2016 5261 No Capes

2016 5278 X-field

2015 9188 Superflea

2015 9188 Transfirma

Calculations

Calculations can be carried out within a query. These calculations can use field values to generate
new values that can be displayed in the answer table.

Example

A query uses the data from the following table:

OrderID ItemID Qty BasePrice

00928 1726 5 9.99

00928 1727 2 17.50

00929 1726 1 29.00

00930 2817 20 5.75

We can design a calculation that can be carried out on this table as part of the query.
We can calculate the Qty multiple by the BasePrice. We can also give this calculation a name
which will be used in the answer table.

Tables(s) and/or calculations (Qty * Base Price) as LineTotal

The answer table would then be:

LineTotal

49.95

35

29

© HERIOT-WATT UNIVERSITY

48 TOPIC 2. DESIGN

It is also possible to use functions to carry out calculations. You need to know the following functions
for higher level.

• Minimum

Find the minimum of the values available. Use the notation MIN(fieldname) in your design.

• Maximum

Find the maximum of the values available. Use the notation MAX(fieldname) in your design.

• Average

Calculates the average of all the values available. Use the notation AVG(fieldname) in your
design.

• Sum

Adds together all the values available. Use the notation SUM(fieldname).

• Count

Counts the number of occurrences of a field. Use the notation COUNT(fieldname).

Grouping

Grouping gathers together the rows of a table or answer table based on a column or columns with
the same value or values.

Examples

1.

The result table from an earlier example is given here.

result:

tournamentID position prizemoney playerID*

1 1 15000 1645

1 2 7000 1873

1 3 1000 2093

2 1 12000 1873

2 2 6000 2093

2 3 1500 2093

3 1 30000 1873

3 2 22000 2093

3 3 15000 0293
.

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 49

A query design with grouping is shown.

Tables(s) and/or query tournament

Fields and/or calculations tournamentid, SUM(prizemoney) as PrizeFund

Search criteria

Grouping BY tournamentid

Sort order

This will total all the prizemoney values for each tournament value. The answer table
generated will be:

tournamentID PrizeFund

1 23000

2 19500

3 67000

. .

2.

This a table of customers for a company.

CustomerID CustomerName Address City PostCode Country

12
Island
Trading

Garden
House
Crowther
Way

Cowes PO31 7PJ UK

13
Königlich
Essen

Maubelstr.
90

Brandenburg 14776 Germany

14
La corne
d'abondance

67, avenue
de l'Europe Versailles 78000 France

15
La maison
d'Asie

1 rue
Alsace-
Lorraine

Toulouse 31000 France

16
Laughing
Bacchus
Wine Cellars

1900 Oak St. Vancouver V3F 2K1 Canada

17
Lazy K
Kountry
Store

12 Orchestra
Terrace

Walla Walla 99362 USA

18
Lehmanns
Marktstand

Magazinweg
7

Frankfurt
a.M.

60528 Germany

19
Let's Stop N
Shop

87 Polk St.
Suite 5

San
Francisco

94117 USA

© HERIOT-WATT UNIVERSITY

50 TOPIC 2. DESIGN

CustomerID CustomerName Address City PostCode Country

20
LILA-
Supermercado

Carrera 52
con Ave.
Bolívar
#65-98 Llano
Largo

Barquisimeto 3508 Venezuela

21
LINO-
Delicateses

Ave. 5 de
Mayo
Porlamar

I. de
Margarita 4980 Venezuela

22
Lonesome
Pine
Restaurant

89
Chiaroscuro
Rd.

Portland 97219 USA

23
Magazzini
Alimentari
Riuniti

Via Ludovico
il Moro 22

Bergamo 24100 Italy

24
Maison
Dewey

Rue
Joseph-Bens
532

Bruxelles B-1180 Belgium

25
Mère
Paillarde

43 rue St.
Laurent

Montréal H1J 1C3 Canada

26
Morgenstern
Gesundkost

Heerstr. 22 Leipzig 04179 Germany

27 North/South
South House
300
Queensbridge

London SW7 1RZ UK

28
Océano
Atlántico
Ltda.

Ing. Gustavo
Moncada
8585 Piso
20-A

Buenos
Aires

1010 Argentina

29
Old World
Delicatessen

2743 Bering
St.

Anchorage 99508 USA

A query design with grouping as shown here:

Tables(s) and/or query Customer

Fields and/or calculations Count(CustomerID), Country

Search criteria

Grouping BY country

Sort order

© HERIOT-WATT UNIVERSITY

TOPIC 2. DESIGN 51

Will produce the answer table:

COUNT(CustomerID) Country

1 Argentina

1 Belgium

2 Canada

2 France

3 Germany

1 Italy

2 UK

4 USA

2 Venezuela

2.8 Learning points

Summary

You should now be able to:

• create and describe entity-relationship diagrams using three or more entities;

• exemplify relationships and their cardinality as one-to-one, one-to-many or many-to-
many;

• use entity-occurrence diagrams to identify and present the relationship between two
entities;

• describe and explain through examples, a compound key;

• describe and explain through examples, a data dictionary with three or more entities
including attribute names, types, size and validation;

• design, create and explain the design of a solution to a query, making use of tables,
queries, fields, search criteria, sort order, calculations and grouping.

© HERIOT-WATT UNIVERSITY

52 TOPIC 2. DESIGN

2.9 End of topic test

Go onlineEnd of Topic 2 test

Q17: Which of the statements is the correct definition of a primary key?

a) An attribute that is the same for all the entities.
b) The longest attribute within an entity.
c) The shortest attribute within an entity.
d) An attribute that has a unique value for each entity.

. .

Q18: Which of the statements is the correct definition of a foreign key?

a) An attribute that is the primary key of another entity set.
b) The attribute field within an entity.
c) The most important attribute in an entity.
d) An attribute in a foreign language.

. .

Q19: Which of these is not a type of relationship?

a) One-to-many
b) One-to-several
c) One-to-one
d) Many-to-many

. .

Q20: Grouping in a query design:

a) display values from the same column grouped with equivalent values in another column.
b) calculates a summary value for each column and displays this.
c) gathers together the rows of a table or answer table based on a column or columns with

the same value or values.
d) creates a relationship between two answer tables and display the result from the two

tables.

. .

Q21: A compound key is:

a) a combination of a primary and foreign key to link to entity sets.
b) a combination of more than one attribute to uniquely identify an entity.
c) an attribute of the entity that is important and will be indexed to ensure fast access within

search.
d) is a unique identifier for an entity that consists on a single attribute.

© HERIOT-WATT UNIVERSITY

53

Topic 3

Implementation

Contents
3.1 Application software . 55

3.2 Introduction . 59

3.2.1 Referential integrity . 59

3.2.2 SQL operations: SELECT . 61

3.2.3 SQL operations: INSERT . 66

3.2.4 SQL operations: UPDATE . 67

3.2.5 SQL operations: DELETE . 70

3.3 Example database . 72

3.4 SQL Wildcards . 74

3.5 Table and column aliases . 76

3.6 Using sub-queries . 77

3.7 SQL aggregate functions (MIN, MAX, AVG, SUM, COUNT) 80

3.8 Computed values . 82

3.9 GROUP BY . 83

3.10 ORDER BY . 85

3.11 Learning points . 86

3.12 End of topic test . 87

54 TOPIC 3. IMPLEMENTATION

Prerequisites

From your studies at National 5 you should already know how to:

• implement relational databases with two linked tables to match a design with referential
integrity;

• describe, exemplify and implement SQL operations for pre-populated relational
databases, with a maximum of two linked tables using SELECT, INSERT, UPDATE,
DELETE queries;

• use:

◦ FROM, WHERE and ORDER BY clauses within queries;

◦ WHERE clauses which make use of AND, OR, <, >, =;

◦ ORDER BY clauses which make use of a maximum of two fields;

◦ equi-joins to select data from two tables.

Learning objective

By the end of this topic you should be able to:

• describe, exemplify and use SQL operations for pre-populated relational databases,
with three or more linked tables;

• use:

◦ UPDATE, SELECT, DELETE and INSERT statement on more complex related
tables;

◦ wildcards in your queries;

◦ aggregated functions MIN, MAX, AVG, SUM and COUNT to process data using
queries;

◦ GROUP BY clauses to gather data of similar values together;

◦ ORDER BY clauses to sort answer tables on multiple fields;

• make more complex use of WHERE clauses to select data;

• use sub-queries so that the answer table generated by a previous query can be used
as the basis for a further query;

• read and explain SQL statements which makes use of the above points.

© HERIOT-WATT UNIVERSITY

TOPIC 3. IMPLEMENTATION 55

3.1 Application software

You will require access to a RDBMS which supports the use of SQL commands for this Topic. There
are many technologies that support the use of SQL commands.

MySQL / MariaDB

MySQL is an open-source relational database management system (RDBMS) and one of the most
popular applications used to build databases on the web and other systems. MariaDB is a different
version (fork) of MySQL which developers have chosen to develop in a different direction. Both
these applications are high-performance RDBMSs that can be used for this course.

You can use these applications from the command line however a common method is to use an
application such as phpMyAdmin or MySQLWorkBench

Figure 3.1: Design View within phpMyAdmin

© HERIOT-WATT UNIVERSITY

56 TOPIC 3. IMPLEMENTATION

Figure 3.2: Browsing a table in phpMyAdmin

Figure 3.3: Screen from MySQL WorkBench

© HERIOT-WATT UNIVERSITY

TOPIC 3. IMPLEMENTATION 57

Figure 3.4: Relationships Screen from MySQL WorkBench

© HERIOT-WATT UNIVERSITY

58 TOPIC 3. IMPLEMENTATION

SQL view within Microsoft Access

Within Microsoft Access is the Query View. This view allows access to a SQL editor for you enter
commands. Queries can be entered here and then run.

Figure 3.5: SQL Window within Query View in Microsoft Access

*AMP Stack

*AMP is a term used to define a combination of operating system, Apache Web Server, MySQL or
MariaDB database server and PHP. The popularity of *AMP across the World Wide Web is driven
by the low-cost of deployment; the components of *AMP (other than the operating system) are
Open-Source applications, free software that can be used without purchasing a license.

Versions of the *AMP stack can be downloaded for Windows, MacOS X and Linux at no cost from:

• XAMMP: https://www.apachefriends.org/

• MAMP: https://www.mamp.info/

• WampServer: http://www.wampserver.com/en/

MySQL or MariaDB is the key database component of *AMP and dominates online databases used
to provide services. There are over 10 million active installations of MySQL/Maria DB and it is the
database technology that drives popular web tools such as Wordpress, Tumblr and Twitter.

If you are using phpMyAdmin then you will likely have access to an *AMP stack.

© HERIOT-WATT UNIVERSITY

https://www.apachefriends.org/
https://www.mamp.info/
http://www.wampserver.com/en/

TOPIC 3. IMPLEMENTATION 59

3.2 Introduction

From National 5 Computing Science you should already be familiar with queries which manipulate
data from two linked tables.

These linked tables are connected by a primary / foreign key and adhere to referential integrity.

3.2.1 Referential integrity

Referential integrity means that the relationship between two tables should always be consistent.
A foreign key is a primary key value from another table.

Figure 3.6: One-to-many relationship with primary and foreign keys

In the example above, the UserID is the primary key of the User table and is a foreign key in the
Post table. If the row for NKSL was removed, then the table would be as follows.

© HERIOT-WATT UNIVERSITY

60 TOPIC 3. IMPLEMENTATION

Figure 3.7: One-to-many relationship with primary and foreign keys without referential integrity

In this example, there is no primary key value for the foreign key value 72618. Deleting the row for
NKSL creates inconsistent rows in the Post table. It breaks the link between the two tables.

Enforcing referential integrity means that there cannot be foreign key values that do not have a
corresponding primary key value in the linked table. It prevents breaking the link between primary
and foreign keys in related tables. It also prevents new rows being added in a table where the foreign
key does not have a matching primary key value in the linked table.

If referential integrity is enforced then removing a row that has the primary key value, should also
delete all the rows in the linked table with the related foreign key. This process is called "cascade
deletion". So, deleting the row for HappyHarry in the User table will also delete all the related rows
in the Post table e.g.

Figure 3.8: Cascaded deletions

In the rare occasion that there is a need to update the primary key value, then it is important that
all the linked foreign keys are also updated. This process is called "cascade update". Any changes
to a primary key value are also copied to all the related foreign key values. If the primary key for
GamerTag101 is changed from 72619 to 89212 then all the related foreign key values are also

© HERIOT-WATT UNIVERSITY

TOPIC 3. IMPLEMENTATION 61

updated e.g.

Figure 3.9: Cascaded updates

3.2.2 SQL operations: SELECT

At National 5 you used SQL operations to query pre-populated databases with two linked tables.

SQL Statements

A single line of an SQL command is called a statement. These statements will consist of one or
more clauses. Each clause contains a specific SQL keyword and some data that it acts upon. The
following is an example of a statement using the SELECT command which locates and displays
data according to the details entered.

1 ������ ���	
�� ����������

2 ���� ���	

3 ����� ���	
� � �����

4 ����� � ���������� ����!

In this example, each clause has been placed on a separate line and the SQL keywords have
been capitalised. Notice that the semi-colon (;) is used to terminate the statement. There is no
requirement to place a statement across multiple lines or to capitalise commands but for clarity in
the following activities this is the approach that will be used.

Practical tasks using SELECT

The following activities make use of a database of Users and Posts.

Download https://courses.scholar.hw.ac.uk/vle/asset/Downloads/H-CCMP/Course%20Downloads/
C45F14CD-EA9B-6478-B678-E3ACFF7C1CE4/SELECT.zip, extract the files and then do one of
the following, depending on your database management system:

• import user-post.sql to an empty database to create the complete database;

• open user-post.accdb in Microsoft Access;

• CSV files users.csv and posts.csv are available for each database table for conversion to other
platforms.

© HERIOT-WATT UNIVERSITY

https://courses.scholar.hw.ac.uk/vle/asset/Downloads/H-CCMP/Course%20Downloads/C45F14CD-EA9B-6478-B678-E3ACFF7C1CE4/SELECT.zip
https://courses.scholar.hw.ac.uk/vle/asset/Downloads/H-CCMP/Course%20Downloads/C45F14CD-EA9B-6478-B678-E3ACFF7C1CE4/SELECT.zip

62 TOPIC 3. IMPLEMENTATION

You will require an RDMS, such as MariaDB/MySQL (PhpMyAdmin) or Microsoft Access, to enter
SQL commands and to run these to produce answer tables.

Activity: Using SELECT (1)

Enter the SQL: ������ � �	
� ����

This will display an answer table containing all columns and rows from the User table. The
asterisk (*) is a wildcard that means EVERYTHING.

Q1: Write the SQL to display everything from the Post table.

Activity: Using SELECT (2)

Enter the SQL: ������ ����������� �	
� ����

This will display the AccountName column for all the rows from the User table.

Q2: Write the SQL to display just the UserID from the Post table.

Activity: Using SELECT (3)

Enter the SQL: ������ ������ ���������� �	
� ����

This will display the PostID and PostContent columns from the Post table.

Q3: Write the SQL to display just the UserID and PostContent from the Post table.

Activity: Using SELECT (4)

Enter the SQL: ������ � �	
� ���� ����

This shows the rows from each table with every row from the corresponding table. Without a
JOIN the query doesn't work.
The type of join you know from National 5 is EQUI-JOIN which is an equal join between the
tables. The equi-join is the "link" between the primary and foreign keys. In this case, the
primary key User.UserID and foreign key Post.UserID.

Q4: Write the SQL to display all the columns from both tables where there the value of the
primary key (User.UserID) is the same as the foreign key (Post.UserID).

© HERIOT-WATT UNIVERSITY

TOPIC 3. IMPLEMENTATION 63

Activity: Using SELECT (5)

Enter the SQL:

1 ������ " ���� ���	 � #���

2 ����� ���	$���	
� % #���$���	
�

3 �� ���������� % &�'�� ��&!

AND is used to apply both parts of the WHERE clause. This query displays all the columns
from both tables for a user with the AccountName "WhoRYou".

Q5: Write the SQL to display all the columns for the PostID with a value of 281756.

Activity: Using SELECT (6)

Enter the SQL:

1 ������ " ���� ���	

2 ����� ���	
� � �()*+!

This will display all the columns where the User ID is greater than 72631.

Q6: Write the SQL to display all the columns from the Post table where the PostID is less
than 281749.

© HERIOT-WATT UNIVERSITY

64 TOPIC 3. IMPLEMENTATION

Activity: Using SELECT (7)

Enter the SQL:

1 ������ " ���� ���	

2 ����� ���	
� , �()(� �� ���	
� � �()-.!

OR is used to connect the two conditions. This query will find all rows for UserIDs that are
less than 72620 or where they are greater than 72658.

Q7: Write the SQL to display the PostID and PostContent from the Post table where the
PostID is either less than 281722 or greater than 281954.

Activity: Using SELECT (8)

Enter the SQL:

1 ������ " ���� ���	 � #���

2 ����� ���	$���	
� % #���$���	
�

3 �� /#���$���	
� , �()(� �� #���$���	
� � �()-.0!

This is a little more complicated. The equi-join between the two tables is established using
the User.UserID = Post.UserID. The conditions, UserID < 72620 OR UserID > 72658, are
written inside curved brackets.

We want BOTH of the conditions to be true AND we want the join to be true as well. Because
of the brackets, the query will find all the matching values for UserID first and then find the
values that match for the relationship.

Q8: Write the SQL to display the AccountName and PostContent from the User and Post
tables where the PostID is equal to either 281821 or 281829.

Activity: Using SELECT (9)

Enter the SQL:

1 ������ "

2 ���� ���	

3 ����� � ���������� ����!

Results in answer tables can be sorted on one or more columns. These columns can be
placed in ascending or descending order. This query sorts the rows of the User table into
descending order of AccountName.

Q9: Write the SQL to display sorted rows from the Post table in ascending order of UserID.

© HERIOT-WATT UNIVERSITY

TOPIC 3. IMPLEMENTATION 65

Activity: Using SELECT (10)

Enter the SQL:

1 ������ "

2 ���� #���

3 ����� � ���	
� ����� #���������� ��!

This places all the rows into order by UserID descending (from biggest number to smallest)
and, where the UserID values are the same, places the PostContent column into alphabetical
order ascending.

Q10: Write the SQL to display sorted rows from the Post table in ascending order of UserID
ascending and then PostID descending.

Activity: Using SELECT (11)

Enter the SQL:

1 ������ "

2 ���� #���

3 ����� #���
� % (.+�)* �� #���
� % (.+�)- �� #���
� % (.+�).

4 ����� � ���	
� ����� #���������� ��!

This places all the rows into order by UserID descending (from biggest number to smallest)
and, where the UserID values are the same, places the PostContent column into alphabetical
order ascending.

Q11: Write the SQL to display sorted rows from the Post table in ascending order of UserID
ascending and then PostContent descending where PostID is greater than 281952.

Activity: Using SELECT (12)

Enter the SQL:

1 ������ ���������� � #���
�� #����������

2 ���� ���	� #���

3 ����� ���	$���	
� % #���$���	
�

4 �� /#���
� % (.+�)* �� #���
� % (.+�)- �� #���
� % (.+�).0

5 ����� � #���$���	
� ���� � #���������� ��!

This combines all the clauses that we used previously. It selects the columns AccountName
from the User table and PostID, PostContent from the Post table.

It implements the equi-join between the two tables (User.UserID = Post.UserID) and uses OR
to select three matching PostIDs.

© HERIOT-WATT UNIVERSITY

66 TOPIC 3. IMPLEMENTATION

The results are then sorted by UserID descending and PostContent ascending.

Q12: Write the SQL to display the UserID and the PostID where the UserID is greater than
72656. Sort the results by UserID ascending and PostID ascending.

3.2.3 SQL operations: INSERT

The INSERT command is used to add a row or rows to a table. The format of the command is:

1
�����
��� ��12� /��2���+ � ��2���(� ��2���*� $$$0

2 3���� /4�2��+� 4�2��(� 4�2��*� $$$0!

If you are adding values for all the columns of the table, you do not need to specify the column
names in the SQL query. However, make sure the order of the values is in the same order as the
columns in the table.

The statement to add a new row, with the value 72661 for UserID and "shadow99" for AccountName,
to the User table would be:

1
�����
��� ���	

2 3���� /�())+ � &�'�5�677&0!

The INSERT command can be used to add more than one row at the same time. For example:

1
�����
��� ���	

2 3���� /�())+ � &�'�5�677&0�

3 /�())(� &8��5+�+&0�

4 /�())* � &�2�9�:��:&0!

Key point

Multiple Insert Value clauses are not supported by Microsoft Access. If you are using
Microsoft Access then you can create an INSERT statement for each row of data to be
entered.

The INSERT command also change the order of the column values being added. For example:

1
�����
��� ���	 /���������� � ���	
�0

2 3���� /&�'�5�677&� �())+0!

Practical tasks using INSERT

The following activities make use of a database of Users and Posts. You previously used this
database for the tasks using the SELECT command. If you have not already downloaded the
necessary files, download https://courses.scholar.hw.ac.uk/vle/asset/Downloads/H-CCMP/Course
%20Downloads/C45F14CD-EA9B-6478-B678-E3ACFF7C1CE4/SELECT.zip, extract the files and
then carry out one of the following actions with your RDMS:

© HERIOT-WATT UNIVERSITY

https://courses.scholar.hw.ac.uk/vle/asset/Downloads/H-CCMP/Course%20Downloads/C45F14CD-EA9B-6478-B678-E3ACFF7C1CE4/SELECT.zip
https://courses.scholar.hw.ac.uk/vle/asset/Downloads/H-CCMP/Course%20Downloads/C45F14CD-EA9B-6478-B678-E3ACFF7C1CE4/SELECT.zip

TOPIC 3. IMPLEMENTATION 67

• import user-post.sql to an empty database to create the complete database;

• open user-post.accdb in Microsoft Access;

• CSV files users.csv and posts.csv are available for each database table for conversion to other
platforms.

This section will add new rows to both tables.

Activity: Using INSERT (1)

Enter the SQL:

1
�����
��� ���	

2 3���� /�())+ � &�'�5�677&0!

This will insert a row with the value 72661 for UserID and "shadow99" for AccountName.

Q13: Write the SQL to insert a new user with a UserID of 72662 and the AccountName of
"Good101".

Activity: Using INSERT (2)

Enter the SQL:

1
�����
��� #���

2 3���� /�())+ � (.+7-� � &��6 � �� ���: ��61;�� ;� ��	��;��$&0!

This will insert a row in the Post table.

Q14: Write the SQL to insert a new post with the following values.

UserID: 72662
PostID: 281958
PostContent: "I so need a Durr Burger Skin!!"

3.2.4 SQL operations: UPDATE

The UPDATE command is used to amend rows in a table. It can be used to update multiple rows at
the same time and can make use of WHERE clauses to select the data to be updated. The syntax
of UPDATE command is:

1 �#��� ��12�

2 ��� ��2���+ % 4�2��+� ��2���(% 4�2��(� $$$

3 ����� ���5;�;��!

© HERIOT-WATT UNIVERSITY

68 TOPIC 3. IMPLEMENTATION

Key point

The WHERE clause in the UPDATE statement is really important. If you forget it and just run
UPDATE without, you will update EVERY row in your table and lose all your data!

© HERIOT-WATT UNIVERSITY

TOPIC 3. IMPLEMENTATION 69

The statement to update the AccountName for "shadow99" to "Shatterwind" would be:

1 �#��� ���	

2 ��� ���������� % &�'����	6;�5&

3 ����� ���������� % &�'�5�677&!

The INSERT command can update more than one record at a time. For example, all the posts for the
AccountName "WhoRYou" (UserID 72620) should have been linked to "Good101". User "Good101"
has a UserID of 72662.

1 �#��� #���

2 ��� ���	
� % �())(

3 ����� ���	
� % �()(�!

This will update nine rows with the new UserID value of 72662. Another way to do the same update
would be to use linked tables. When an UPDATE query references two tables, it will only ever update
the first table listed.

1 �#��� #��� � ���	

2 ��� #���$���	
� % �())(

3 ����� #���$���	
� % ���	$���	
� �� ���������� % &�'�� ��&!

Cascade updates

If your RDBMS does not automatically cascade updates to enforce referential integrity, then you will
have to do this manually. So, changing the value for a primary key:

1 �#��� ���	

2 ��� ���	
� % �()+�

3 ����� ���	
5 % �()+.!

Would require the following query to also be run to update the related foreign key values in the Post
table.

1 �#��� #���

2 ��� ���	
� % �()+�

3 ����� ���	
5 % �()+.!

Activity: Using UPDATE (1)

Enter the SQL:

1 �#��� ���	

2 ��� ���������� % &�'����	6;�5&

3 ����� ���������� % &�'�5�677&!

This will update the AccountName where the current value is "shadow99" and replace it with
"Shatterwind".

Q15: Write the SQL to update the AccountName "QuietRam" to "RohanBear".

© HERIOT-WATT UNIVERSITY

70 TOPIC 3. IMPLEMENTATION

Activity: Using UPDATE (2)

Enter the SQL:

1 �#��� #���

2 ��� ���	
� % �())(

3 ����� ���	
� % �()(�!

This will update the UserID where the current value is "72620" and replace it with "72662".

Q16: Write the SQL to update the UserID in the posts table to 72645 where the current value
is 72634.

Activity: Using UPDATE (3)

Enter the SQL:

1 �#��� #���

2 ��� #���������� % &<;�5 �= 2;9� ��9�6�	� ����	&

3 ����� #���
� % (.+�(+!

This will update the PostContent column where the current value of PostID is 281721.

Q17: Write the SQL to update the PostContent, of the row with PostID of 281758, to "Best
leave it unsolved.".

3.2.5 SQL operations: DELETE

The DELETE command is used to delete rows in a table. It can be used to delete multiple rows at
the same time and makes use of WHERE clauses to select the data to be deleted. The syntax of
the DELETE command is:

1 ������ ���� ��12�

2 ����� ���5;�;��!

Key point

The WHERE clause in the DELETE statement is really important. If you forget it and just run
DELETE without it, you will delete every row in your table.

To delete the Post with PostID of 281767 would require this query statement.

1 ������ ���� #���

2 ����� #���
5 % (.+�)�!

© HERIOT-WATT UNIVERSITY

TOPIC 3. IMPLEMENTATION 71

To delete the all the posts for UserID of 72622 would require this query statement.

1 ������ ���� #���

2 ����� ���	
� % �()((!

Cascade deletes

If referential integrity is not enforced by your RDBMS, then you will have to ensure that it is
maintained manually. So, if you delete a primary key value from User, you need to delete the
related foreign key rows of Post.

1 ������ ���� ���	

2 ����� ���	
� % �()>!

Removing this row from the User table would require that the following query is carried out on the
Post table.

1 ������ ���� #���

2 ����� ���	
� % �()>�!

You can delete data using linked tables. Again, this will only delete data from the first listed table.

1 ������ ���� #���� ���	

2 ����� #���$���	
� % ���	$���	
� �� ���������� % &�'�;���==��&!

Activity: Using DELETE (1)

Enter the SQL:

1 ������ ���� #���

2 ����� #���
5 % (.+�)�!

Q18: Write the SQL to DELETE a row from Post where PostID = 281954.

Activity: Using DELETE (2)

Enter the SQL:

1 ������ ���� ���	

2 ����� ���	
� % �()>�!

Now delete the related rows in Post:

1 ������ ���� #���

2 ����� ���	
� % �()>�!

Q19: Write the SQL to DELETE the user and posts related to UserID 72660.

© HERIOT-WATT UNIVERSITY

72 TOPIC 3. IMPLEMENTATION

Activity: Using DELETE (3)

Enter the SQL:

1 ������ ���� #���

2 ����� #���
� � (.+��> �� #���
� , (.+��.!

This will delete all the rows with a PostID of more than 281774 and less than 281778.

Q20: Write the SQL to DELETE the posts with a PostID of greater than 281795 and less than
281802.

Activity: Using DELETE (4)

Enter the SQL:

1 ������ ���� #���

2 ����� #���
� % (.+.(� �� #���
� % (.+.*)!

This will delete the two rows with the PostID values given.

Q21: Write the SQL to DELETE the posts with the following PostIDs: 281838, 281841,
281843 from the Post Table.

3.3 Example database

Exercises for the rest of this Topic will make use of the Movies database. The Movies database is
provided with permission from http://sqlzoo.net/. The site contains many SQL exercises that you
may wish to view.

Download https://courses.scholar.hw.ac.uk/vle/asset/Downloads/H-CCMP/Course%20Downloads/
4D0AE6A2-01F6-8137-D618-772AE364ECFC/movies.zip, extract the files and then carry out the
following actions using your RDMS:

• import movies.sql to an empty database to create the complete database;

• open movies.accdb in Microsoft Access;

• CSV files actor.csv, casting.csv and movie.csv are available for each database table for
conversion to other platforms.

© HERIOT-WATT UNIVERSITY

http://sqlzoo.net/
https://courses.scholar.hw.ac.uk/vle/asset/Downloads/H-CCMP/Course%20Downloads/4D0AE6A2-01F6-8137-D618-772AE364ECFC/movies.zip
https://courses.scholar.hw.ac.uk/vle/asset/Downloads/H-CCMP/Course%20Downloads/4D0AE6A2-01F6-8137-D618-772AE364ECFC/movies.zip

TOPIC 3. IMPLEMENTATION 73

Figure 3.10: Entity Relational Diagram for the movies database

The movies database contains the details of over 48,000 actors, 12,000 movies and 120,000 casting
roles. The actor table contains an id and name e.g. id: 6066, name: Mena Suvari.

The movie table has the following columns:

id: Unique id for each row

title: The title of the movie
year: The year the movie was released

director: The id (from the actor table) of the director

budget: The budget for the movie (where it is known)

gross: How much money the movie grossed (where known). The gross the total income for
the movie before costs are deducted.

The casting table has movieid, actorid and ord columns. The movieid contains the foreign key linked
to the movie table id. The actorid is linked to the actor table id column. The ord column is the
position of the actor in the credits for the movie. The main star would have an ord value of 1, the
co-star 2 and so on.

Table 3.1: Sample of data from the Movies database

actor

id name
3875 James Whitmore
4058 Bob Gunton
5353 Mark Rolston
6152 Morgan Freeman

6514 Tim Robbins
8029 William Sadler
9571 Clancy Brown

26722 Gil Bellows

© HERIOT-WATT UNIVERSITY

74 TOPIC 3. IMPLEMENTATION

casting

movieid actorid ord
20434 3875 8
20434 4058 3
20434 5353 7
20434 6152 2
20434 6514 1
20434 8029 4
20434 9571 5
20434 26722 6

movie

id title year director budget gross

20434
The
Shawshank
Redemption

1994 41208 25000000 28341469

The above example shows that Tim Robbins (actor.id value of 6514) is cast in "The Shawshank
Redemption" with an ord column value of 1. This means that he appears in the first position in the
credits for the movie (because he is the main star of the movie).

3.4 SQL Wildcards

SQL queries can make use of wildcards in a number of ways. From your National 5 course you are
already familiar with the * wildcard that can be used to select all columns from the underlying tables
in a query.

Wildcards can also be used with the LIKE operator. The LIKE operator is used in a WHERE clause to
match specific data in a column. The query ������ � �	
� ����� ���	� ! ��"� #$%& functions
in the same way as ������ � �	
� ����� ���	� ! ' #$%&. But using wildcards with the LIKE
operator allows us more options.

The wildcards used with the LIKE operator are:

• % - the percent sign represents zero, one, or multiple characters;

• � - the underscore represents a single character.

Key point

Microsoft Access uses a question mark (?) instead of the underscore (�). All these examples
will use �. If using Microsoft Access please substitute a ? where a � is shown.

© HERIOT-WATT UNIVERSITY

TOPIC 3. IMPLEMENTATION 75

Table 3.2: Wildcards

SELECT query with LIKE operator Description

1 ������ "

2 ���� ����	

3 ����� ���� �
<� &�'�	2?&!

Show all rows from the actor table where the
name starts with the letters "Charl".

1 ������ "

2 ���� ����	

3 ����� ���� �
<� &?2�4�&!

Show all rows from the actor table where the
name ends with the letters "love".

1 ������ "

2 ���� ����	

3 ����� ���� �
<� &?�$?&!

Show all rows from the actor table which
contain "L." in any position.

1 ������ "

2 ���� ����	

3 ����� ���� �
<� &@���?&!

Shows all rows from the actor table which have
"ans" in the second position.

1 ������ "

2 ���� ����	

3 ����� ���� �
<� &A@?@?&!

Shows all rows from the actor table which have
at least three characters starting with "Z".

Activity: Using Wildcards

Q22: Write the SQL to display the id and title of the movies with a title of "Star Wars" followed
by something e.g. "Star Wars 1: The Phantom Menace"

. .

Q23: Write the SQL to display the id and title of the movies with three letter titles.

. .

Q24: Write the SQL to display the id and title of the movies which end with the word "Part"
followed by two characters. For example, "Atlas Shrugged: Part I".

© HERIOT-WATT UNIVERSITY

76 TOPIC 3. IMPLEMENTATION

3.5 Table and column aliases

Table alias

A table alias is a shortened version of the table name which can be used to refer to columns. This
is particularly useful if the SELECT statement contains references to two columns with the same
name in different tables.

For example:

1 ������ #���$���	
�� #���$#���������� � ���	$����������

2 ���� ���	 � #���

3 ����� ���	$���	
� % #���$���	
�!

This is a long SQL statement but it can be shortened by using table aliases. To create an alias an
alternate name for the table is entered after the table name in the FROM clause. So the above SQL
statement could be shortened to:

1 ������ B$���	
�� B$#���������� � �$����������

2 ���� ���	 �� #��� B

3 ����� �$���	
� % B$���	
�!

The MySQL keyword AS can be used in the clause for clarity, but it is not a requirement i.e.

1 ������ B$���	
�� B$#���������� � �$����������

2 ���� ���	 � �� #��� � B

3 ����� �$���	
� % B$���	
�!

Column alias

A column, calculation or aggregate function can be given an alias within a query.

For example, the query:

1 ������ ���	
�� �����/"0

2 ���� #���

3 8���# � ���	
�!

Generates this answer table:

UserID COUNT(*)

72618 4
72619 7
72621 4
72622 7
... ...

It would be better if the COUNT(*) column had a name that was more helpful. This can be done by
using the AS operator.

1 ������ ���	
�� �����/"0 � &���1�	 �= #����&

2 ���� #���

3 8���# � ���	
�!

© HERIOT-WATT UNIVERSITY

TOPIC 3. IMPLEMENTATION 77

Now the answer table is:

UserID Number of posts

72618 4
72619 7
72621 4
72622 7
... ...

The AS operator can be omitted.

1 ������ ���	
�� �����/"0 &���1�	 �= #����&

2 ���� #���

3 8���# � ���	
�!

This generates the same answer table.

A column alias can be given to any calculated value, aggregated function or column.

3.6 Using sub-queries

Sub-queries are used to use one query as the basis for another query.

So, for example, a query to find the movie with the biggest budget would be:

1 ������ �C/1�5D��0 ���� ��4;�!

This will display the budget column for the movie that has the largest budget. But if you wanted to
know which movie had that budget you could use:

1 ������ �;�2� � :��	 � 1�5D�� ���� ��4;�

2 ����� 1�5D�� % /������ �C/1�5D��0 ���� ��4;�0!

This uses the answer to one query as the criteria for another. In this case, it works, because
������ ��()*�!+��, �	
� ��- �� only returns a single value.

The query:

1 ������ " ���� ��4;� ����� �;�2� �
<� &?���	 ��	�?&!

... generates an answer table which contains all the movies related to "Star Wars".

© HERIOT-WATT UNIVERSITY

78 TOPIC 3. IMPLEMENTATION

id title year director budget gross

17781 Star Wars: The Clone Wars 2008 37204 8500000 68284217
17782 Star Wars Episode I: The Phantom Menace 1999 5969 115000000 924317558

17783 Star Wars Episode II: Attack of the Clones 2002 5969 NULL NULL

17784 Star Wars Episode III: Revenge of the Sith 2005 5969 NULL 848754768

17785 Star Wars Episode IV: A New Hope 1977 5969 11000000 NULL

17786
Star Wars Episode V: The Empire Strikes
Back

1980 20166 32000000 538375067

17787 Star Wars Episode VI: Return of the Jedi 1983 10439 32500000 475106177

20542 The Star Wars Holiday Special 1978 22625 NULL NULL

To query this answer table further, the original query could be used as a sub-query:

1 ������ �;�2�

2 ���� ����	 �

3 /������ " ���� ��4;� ����� �;�2� �
<� &?���	 ��	�?&0 � ���	6�	�

4 ����� ����	$;5 % ���	6�	�$5;	����	

5 �� ����	$���� % &8��	D� �����&!

This uses the answer table generated by)������ � �	
� ��- � ���	� � �.� ��"� /0���� ���0/,.
It gives this answer table the alias "starwars" and then it is treated like any other table.

So, the query (including the sub-query) would generate the answer table of all the Star Wars movies
that were directed by George Lucas.

title
Star Wars Episode I: The Phantom Menace

Star Wars Episode II: Attack of the Clones

Star Wars Episode III: Revenge of the Sith

Star Wars Episode IV: A New Hope

Query design

When you have a query design, that uses one query as the basis for a second query e.g.

Examples

1. Query 1

Table(s) and / or query player, gamescore

Fields and / or calculations position, prizemoney

Search criteria
forename = "Jenny", surname = "McKay",
player.playerid = result.playerid

Grouping

Sort order
. .

© HERIOT-WATT UNIVERSITY

TOPIC 3. IMPLEMENTATION 79

2. Query 2

Table(s) and / or query [All results for Jenny McKay]

Fields and / or calculations MAX(prizemoney)

Search criteria position = 1

Grouping

Sort order

Implemented in SQL the first query would be:

1 ������ 	���2�$B��;�;�� � 	���2�$B	;E�����:

2 ���� B2�:�	� 	���2�

3 ����� B2�:�	$=�	����� % &F���:&

4 �� B2�:�	$��	���� % &��9�:&

5 �� B2�:�	$B2�:�	;5 % 	���2�$B2�:�	;5!

This query can be assigned the alias ��.. ���.� 1�� 2���3 ��4�3�, in SQL to be used in the
second query. Note the use of � - this is because there are spaces in the alias so we have to use �

around it.

Implemented in SQL the second query would be:

1 ������ ��G/H22 	���2�� =�	 F���: ��9�: H$B	;E�����:0

2 ���� /

3 ������ 	���2�$B��;�;�� � 	���2�$B	;E�����:

4 ���� B2�:�	� 	���2�

5 ����� B2�:�	$=�	����� % &F���:&

6 �� B2�:�	$��	���� % &��9�:&

7 �� B2�:�	$B2�:�	;5 % 	���2�$B2�:�	;50

8 � H22 	���2�� =�	 F���: ��9�: H

9 ����� I22 	���2�� =�	 F���: ��9�: I$B��;�;�� % +!

This is how, in SQL, we use the result of one query as the basis for a second query.

© HERIOT-WATT UNIVERSITY

80 TOPIC 3. IMPLEMENTATION

3.7 SQL aggregate functions (MIN, MAX, AVG, SUM, COUNT)

Aggregate functions in SQL examine multiple values across a selected row and perform a calculation
on these.

Table 3.3:

Function Decsription Example

���
Calculates the smallest value for the
column or calculation.

������ ���)*�!+��, �	
� ��- ��

��(
Calculates the largest value for the
column or calculation.

������ ��()5�+� � 6���, �	
� � ��6����

�78
Calculates the average for the column
or calculation.

������ �78)6� +6�, �	
� ��!����

���
Calculates the total for the column or
calculation.

������ ���)�.��3, �	
� ��11 �+�

�
���

Calculates the total number of rows /
occurrences for values in a column.
Can use * to count rows.

������ �����)�, �	
� ����6���

Activity: Using MIN

Using the movies database, enter the following query:

1 ������ " ���� ��4;�

2 ����� 1�5D��
� ��� ��22 �� D	���
� ��� ��22!

Sometimes some of the rows may contain empty values. For example, in the movie table the
budget or the gross figure for a movie may not be known. In this case, the value is a NULL.
NULL means that the cell has no value set - this is different from an empty value (e.g. "") and
different from 0.

To find the smallest budget for a movie with a known budget and gross:

1 ������ �
�/1�5D��0 ���� ��4;�

2 ����� 1�5D��
� ��� ��22 �� D	���
� ��� ��22!

Q25: Write the SQL to display the minimum gross for movies where both the budget and
gross are not null.

Activity: Using MAX

We can find the maximum value for the budget in a movie using the query:

1 ������ �C/1�5D��0 ���� ��4;�!

We can use this to find the row in the table which contains this value:

© HERIOT-WATT UNIVERSITY

TOPIC 3. IMPLEMENTATION 81

1 ������ �;�2� � :��	 � 1�5D�� ���� ��4;�

2 ����� 1�5D�� % /������ �C/1�5D��0 ���� ��4;�0!

Q26: Write the SQL to display the title and year of the most recent movie.

Activity: Using AVG

We can find the average budget for a movie using:

1 ������ 38/1�5D��0 ���� ��4;�!

If we want to ignore the rows where the budget is NULL we would use:

1 ������ 38/1�5D��0 ���� ��4;�

2 ����� 1�5D��
� ��� ����!

Q27:

a) Write the SQL to calculate the average gross for movies where the gross figure is not
NULL.

b) Write the SQL to calculate the average budget for all movies made in 1975.

Activity: Using SUM

We can find the total budget for movies made in 1920 using:

1 ������ ���/1�5D��0 ���� ��4;�

2 ����� :��	 % +7(�!

Q28: Write the SQL to calculate the total gross for movies made in 1999.

Activity: Using COUNT

We can count the number of movies made in 1969 using:

1 ������ �����/"0

2 ���� ��4;�

3 ����� :��	 % +7)7!

Q29: Write the SQL to find out how many movies were made after 1974 and before 1980.

© HERIOT-WATT UNIVERSITY

82 TOPIC 3. IMPLEMENTATION

3.8 Computed values

Calculations can be carried out using SQL. For example, the query SELECT 7+2 will display 9.
Columns can be used to calculate computed values.

The star of a "Mission Impossible" movie will be paid 10% of the gross for the movie.

1 ������ D	��� "+�J+�� � B�:���� ���� ��4;�

2 ����� �;�2� �
<� &�;��;��
�B���;12�?&!

This will calculate 10% of the gross for the movies with "Mission Impossible" at the start of the title.
An alias is used to display the computed value with a column name of Payment.

Another example is the stars of the movie "Zoolander" will each be paid 60000. What is the total
"Staff Pay" for the movie.

1 ������ �����/"0")���� �� &���== #�:&

2 ���� ��4;� � ����;�D

3 ����� ��4;�;5 % ;5 ��5 �;�2� % &A��2��5�	&!

This query uses the COUNT function to total the number of actors cast in roles and then multiplies
this by the payment to each actor. This computed value is given an alias of "Staff Pay".

Activity: Using computed values (1)

We can calculate the ratio of budget against gross for movies made in 2010 using the query:

1 ������ �;�2� � :��	 � D	���J1�5D�� � &���;�&

2 ���� ��4;�

3 ����� :��	 % (�+� �� 1�5D��
� ��� ���� �� D	���
� ��� ����!

Where this is greater than 1, the movie made a profit. Where it is less than 1 the movie made
a loss.

To display only the profitable movies, we would use the query:

1 ������ �;�2� � :��	 � D	���J1�5D�� � &���;�&

2 ���� ��4;�

3 ����� :��	 % (�+� �� 1�5D��
� ��� ���� �� D	���
� ��� ���� ��

D	���J1�5D�� � +!

The biggest loss-making movie of 2010 has the minimum ratio.

1 ������ �
�/D	���J1�5D��0

2 ���� ��4;�

3 ����� :��	 % (�+� �� 1�5D��
� ��� ���� �� D	���
� ��� ����!

© HERIOT-WATT UNIVERSITY

TOPIC 3. IMPLEMENTATION 83

To find the details of the biggest loss-making movie, we can use the query:

1 ������ �;�2� � :��	 � D	���J1�5D�� � &���;�&

2 ���� ��4;�

3 ����� :��	 % (�+� �� 1�5D��
� ��� ���� �� D	���
� ��� ���� ��

D	���J1�5D�� % /

4 ������ �
�/D	���J1�5D��0

5 ���� ��4;�

6 ����� :��	 % (�+� �� 1�5D��
� ��� ���� �� D	���
� ��� ����

7 0!

Q30: Write the SQL to find the most profitable movie of 2001 based on its budget i.e. one
with the highest ratio.

Activity: Using computed values (2)

A famous director has decided to give all the actors with "Smith" in their name £150.

This would be calculated as:

1 ������ �����/"0

2 ���� ����	

3 ����� ���� �
<� &?��;�'?&!

Q31: The government is going to tax all movies with the word "Gold" in the title. These will
all have to pay tax of 15% of their budget. Display the title and tax due in your query.

3.9 GROUP BY

The GROUP BY statement is often used with aggregate functions (MIN, MAX, AVG, SUM, COUNT)
to group results by one or more columns.

1 ������ ��2���� ��2���� $$$

2 ���� ��12�

3 ����� ���5;�;��

4 8���# � ��2���� ��2���� $$$

We can show all the movies by the same director using the query:

1 ������ ���� � 5;	����	 � �����/"0

2 ���� ��4;� � ����	

3 ����� 5;	����	%����	$;5

4 8���# � 5;	����	!

© HERIOT-WATT UNIVERSITY

84 TOPIC 3. IMPLEMENTATION

This will group the results by the director value and the count function adds up the grouped rows for
each director e.g.

Table 3.4: Table grouped by director

name director Count(*)

2 94
Richard Brooks 3 15
Warren Beatty 4 4
Peter Fairman 19 2
John Cornell 36 1
Charles S. Dutton 39 2
Scott Winant 49 1
Ken Olin 62 1
Edmund Goulding 65 14
Bo Widerberg 77 4
Karyn Kusama 82 3
Marc Webb 95 1
Jonathan Parker 107 1
Roland Emmerich 121 8
...

Another example would be a query used to count the number of times an actor has been the main
star (ord = 1) in a movie:

1 ������ ���� � �����/"0

2 ���� ����	 � ����;�D � ��4;�

3 ����� ����	$;5 % ����;�D$����	;5 ��

4 ����;�D$��4;�;5 % ��4;�$;5 ��

5 �	5%+

6 8���# � ����	$;5!

This would generate the answer table:

name COUNT(*)

1
Warren Beatty 9
Goldie Hawn 12
Arthur Brauss 1
Paul Hogan 4
John Meillon 1
Anne Carlisle 1
Paul Hogan 1
Kenneth Welsh 1
Jeanne Tripplehorn 1
... ...

© HERIOT-WATT UNIVERSITY

TOPIC 3. IMPLEMENTATION 85

Activity: Using GROUP BY

Q32: Write the SQL to display each year with the total budget for movies made in that year.
The column for total budget should be called "Movie Budget". The query should ignore NULL
values for budget.

. .

Q33: Write the SQL to count the number of actors cast in each movie with a budget of more
than 180000000.
The count of actors should have the name "Total Cast". The query should display the movie
title and the "Total Cast".

. .

Q34: Write the SQL a query to count the number of times an actor has been the main star
(ord = 1) in a movie.
Sort the results by the number of times the actor has been the main star.

3.10 ORDER BY

From your studies for National 5, you are aware that Order By is used to sort the answer table into
order by one or more fields. These fields can be in ascending or descending order. In the National
5 course, you would have sorted your answer tables by a maximum of two fields however in Higher
you can use more than two.

For example, a query is required to display the following details:

• Year of movie

• Total number of actors cast in movies in that year

This will be sorted by total actors descending and year ascending.

1 ������ :��	 � �����/"0 � &����2���	�&

2 ���� ��4;� � ����;�D

3 ����� ��4;�$;5 % ����;�D$��4;�;5

4 8���# � :��	

5 ����� 1: ����2���	� ����� :��	 ��!

Activity: Using ORDER BY

Q35: Write the SQL to display the number of movies that each actor has been cast in for
each year.
Sort the answer table so that the actor with the most movies in any year is at the top of the
table. Where the number of movies is the same sort the results by year ascending.

. .

© HERIOT-WATT UNIVERSITY

86 TOPIC 3. IMPLEMENTATION

Q36: Write the SQL to count the number of actors cast in each movie with a budget of more
than 180000000.
The count of actors should have the name "Total Cast". The query should display the movie
title and the "Total Cast". Sort the results by title ascending

. .

Q37: Write code to sort the movie table by year ascending, budget descending and then
gross descending.

3.11 Learning points

Summary

You should now be able to:

• describe, exemplify and use SQL operations for pre-populated relational databases,
with three or more linked tables;

• use:

◦ UPDATE, SELECT, DELETE and INSERT statement on more complex related
tables;

◦ wildcards in your queries;

◦ aggregated functions MIN, MAX, AVG, SUM and COUNT to process data using
queries;

◦ GROUP BY clauses to gather data of similar values together;

◦ ORDER BY clauses to sort answer tables on multiple fields;

◦ use sub-queries so that the answer table generated by a previous query can be
used as the basis for a further query;

• make more complex use of WHERE clauses to select data;

• read and explain SQL statements which makes use of the above points.

© HERIOT-WATT UNIVERSITY

TOPIC 3. IMPLEMENTATION 87

3.12 End of topic test

Go onlineEnd of topic 3 test

Questions 39 to X make use of these tables:

branch (branchno, street, city, postcode)

staff (staffno, fname, lname, position, sex, dob, annualsalary, branchno*)

propertyForRent (propertyno, street, city, postcode, type, rooms, rent, owner, staffno*,
branchno*)

client (clientno, fname, lname, telno, preftype, maxrent)

viewing (clientno*, propertyno*, viewdate, comments)

Q38: Which of these queries produces a list of all branch offices in London or Glasgow?

a) ������ � �	
� *����6 ���	� � �3 ' ����!���
	 � �3'�8.�+�5��

b) ������ � ���	� *����69� �3 ' ����!���
	 *����69� �3 ' �8.�+�5��

c) ������ � �	
� *����6 ���	� � �3 ' ����!���
	 �8.�+�5��

d) ������ � �	
� ��11� *����6 ���	� ��119*����6�� ' *����69*����6���

. .

Q39: Which query produces a list of the staff number and last name of staff who work in the
branch at "13 Main Road"?

a)

1 ������ ���==��� 2����

2 ���� ���== � 1	���'

3 ����� ���==$1	���'�� % 1	���'$1	���'��

4 �� 1	���'$��	��� % H+* ��;� ���5 H!

b)

1 ������ "

2 ���� ���== � 1	���'

3 ����� ���==$1	���'�� % 1	���'$1	���'��

4 �� 1	���'$��	��� % H+* ��;� ���5 H!

c)

1 ������ ���==��� 2����

2 ���� ���== � 1	���'

3 ����� ���==$1	���'�� % 1	���'$1	���'��!

d)

1 ������ ���==��� 1	���'$��	���%H+* ��;� ���5 H� 2����

2 ���� ���== � 1	���'

3 ����� ���==$1	���'�� % 1	���'$1	���'��!

. .

© HERIOT-WATT UNIVERSITY

88 TOPIC 3. IMPLEMENTATION

Q40: Which of these queries produces an answer table which shows the details for all
properties being sold by the Edinburgh branch?

a)

1 ������ " ���� B	�B�	�:��	����

2 ����� �;�: % H�5;�1�	D' H!

b)

1 ������ " ���� 1	���'

2 ����� �;�: % H�5;�1�	D' H!

c)

1 ������ " ���� 1	���'� B	�B�	�:��	����

2 ����� 1	���'��$�;�: % H�5;�1�	D' H

3 �� B	�B�	�:��	����$1	���'�� % 1	���'$1	���'��!

d)

1 ������ " ���� 1	���'� B	�B�	�:��	����

2 ����� 1	���'��$�;�: % H�5;�1�	D' H!

. .

Q41: Which query produces an answer table which shows the fname, lname and
annualsalary of the staff member in Glasgow with the highest annualsalary?

a)

1 ������ =���� � 2���� � �C/�����2��2�	:0 ���� ���==

2 ����� �;�: % H82��D�6 H!

b)

1 ������ =���� � �C/�����2��2�	:0 ���� ���==

2 ����� ���==$1	���'�� % 1	���'$1	���'�� �� �;�: % H82��D�6 H!

c)

1 ������ ���==$"� �C/�����2��2�	:0 ���� ���== � 1	���'

2 ����� ���==$1	���'�� % 1	���'$1	���'�� �� �;�: % H82��D�6 H!

d)

1 ������ =���� � 2���� � �C/�����2��2�	:0 ���� ���== � 1	���'

2 ����� ���==$1	���'�� % 1	���'$1	���'�� �� �;�: % H82��D�6 H!

. .

© HERIOT-WATT UNIVERSITY

TOPIC 3. IMPLEMENTATION 89

Q42: Which query produces an answer table which shows all the clients with a maxrent of
less than 800?

a) ������ � �	
� �. ��� ���	� ��:���� �� �
� &$$�

b) ������ � �	
� �. ��� ���	� ��:���� < &$$�

c) ������ ��:���� �	
� �. ��� ���	� ��:���� < &$$�

d) ������ � �	
� �. ��� ���	� > ��:���� &$$�

. .

Q43: With SQL, how do you select all the records from a table named "developer" where the
value of the column "firstname" starts with an "a"?

a) ������ � �	
� !�-�.�;�� ���	� 1 ������ ��"� ��0��

b) ������ � �	
� !�-�.�;�� ���	� 1 ������ ��"� �0���

c) ������ � �	
� !�-�.�;�� ���	� 1 ������ '�0�0��

d) ������ � �	
� !�-�.�;�� ���	� 1 ������ '����

. .

Q44: With SQL, how can you return all the records from a table named "developer" sorted
descending by "firstname"?

a) ������ � �	
� !�-�.�;��
	��	 1 ������ �����

b) ������ � �	
� !�-�.�;�� �
	� �1 ������� �����

c) ������ � �	
� !�-�.�;��
	��	 <= 1 ������ �����

d) ������ � �	
� !�-�.�;�� �
	� <= 1 ������ �����

. .

Q45: With SQL, how can you delete the records where the "firstname" is "Peter" in the
developer table?

a) ������ 	
� 1 ������ '������� �	
� !�-�.�;���

b) ������ �	
� !�-�.�;�� ���	� 1 ������ ' ��������

c) ������ ������� �	
� !�-�.�;���

d) ������ 1 ������ '������� �	
� !�-�.�;���

. .

© HERIOT-WATT UNIVERSITY

90 TOPIC 3. IMPLEMENTATION

Q46: A database table is shown as:

Table: Car
type model year listPrice serviceNeed
SUV A716 2018 60000 2
SUV X75 2018 72000 3
Coupe XF80 2017 35000 2
Coupe Radar 2 2016 75000 2

SUV Sport 57 2016 73000 2
Coupe EOS91 2018 42000 4
Coupe MX81 2017 39000 5

This query is run:

1 ������ �:B� � �C/2;��#	;��0 � &���� �GB���;4�&

2 ���� ��	

3 8���# 1: �:B�!

Select the correct answer table generated by this query.

a)

type most expensive

SUV 60000
Coupe 39000

b)
type most expensive

SUV 35000
Coupe 75000

c)

type most expensive

SUV 73000
Coupe 75000

d)

type most expensive

SUV 72000
Coupe 42000

. .

© HERIOT-WATT UNIVERSITY

TOPIC 3. IMPLEMENTATION 91

Q47: A query is run against following two tables:

Table: competition

competitionID country venue eventDate

1 UK Southport 13/05/2018
2 Switzerland Bern 29/08/2018
3 Canada Montreal 08/09/2018
...

Table: entryticket

competitionID Team Placing PrizeValue
1 GoGames Gold 20
1 XForceLite Silver 15
1 TrashCans Bronze 10
2 XForceLite Gold 30
2 Question101 Silver 10
2 TrashCans Bronze 0
3 GoGames Silver 40
...

The query:

1 ������ �����	: � ���/#	;E�3�2��0

2 ���� ���B��;�;�� � ���	:�;�9��

3 ����� ���B��;�;��$���B��;�;��
� % ���	:�;�9��$���B��;�;��
�

4 8���# � �����	:!

What is the purpose of the GROUP BY line of the SQL statement?

a) To enforce referential integrity.
b) To allow aggregation of data using COUNT.
c) To group results by country so that each country only appears once.
d) To establish a one-to-many grouped relationship.

© HERIOT-WATT UNIVERSITY

93

Topic 4

Testing and evaluation

Contents
4.1 Testing SQL queries . 95

4.2 Evaluating SQL queries . 100

4.2.1 Fitness for purpose . 101

4.2.2 Accuracy of output . 101

4.3 Learning points . 101

4.4 End of topic test . 102

94 TOPIC 4. TESTING AND EVALUATION

Prerequisites

From your studies at National 5 you should already know how to:

• describe and exemplify testing of SQL operations to ensure they work correctly;

• evaluate your solution in terms of fitness for purpose and accuracy of output.

Learning objective

By the end of this topic you should be able to:

• describe and exemplify testing of SQL operations, involving solutions using three or
more linked tables, to ensure they work correctly;

• evaluate your solution in terms of fitness for purpose and accuracy of output.

© HERIOT-WATT UNIVERSITY

TOPIC 4. TESTING AND EVALUATION 95

4.1 Testing SQL queries

From your studies at National 5 level you will be aware of testing queries which make use of a
maximum of two linked tables. You will have learnt that SQL queries are tested to ensure that they
function correctly and produce the required result - either an updated answer table (for SELECT
queries) or a resulting change to the data (INSERT, UPDATE, DELETE queries).

When testing you are effectively testing that the require results are present.

Testing SQL queries are correct

The following eSports examples will use this database:

player (username, realname, password, email, message, terms�and�conditions)

gamescore (score�id, username*, game, score*)

game (game, platform)

player

username realname password email message terms�and�conditions

shocker Paul White pink10red paul@gamers.org
I want to play
competitively

on

peach Sally
McDonald

trustme1 sally@scott.org
I'm part of an
eSports team

on

destroyer Chloe
Davidson

shadow99 chloe@coders.org I love games on

gamescore

score�id username game score
625 shocker Massive RPG 726122
626 peach SuperJoe 102928

627 peach Massive RPG 625100
628 shocker Terra 1999 821200
629 destroyer Terra 1999 120001

630 peach SuperJoe 283102

630 destroyer SuperJoe 299000

game

game platform

Massive RPG X-station
SuperJoe S-box
Terra 1999 PC

© HERIOT-WATT UNIVERSITY

96 TOPIC 4. TESTING AND EVALUATION

To effectively test queries, you should be able to read and explain the SQL for a given query. A
query is created to show the maximum score for each platform.

1 ������ B2��=�	� � �C/���	�0

2 ���� D������	� D�� D��� D

3 ����� D�$D��� % D$D��� 8���# � B2��=�	�!

This query will display only the platform and the maximum score from "gamescore". The results will
be grouped by platform so there will only be one row for each different value of platform. The two
tables are joined using the primary key / foreign key pair of game.game and gamescore.game.

The resulting answer table would be:

platform MAX(score)

X-station 821200
S-box 299000
PC 726122

The following query is designed to produce the list of maximum scores for each player.

1 ������ B2�:�	� �C/���	�0

2 ���� B2�:�	 B� D������	� D�

3 8���# 1: B2�:�	!

There are several problems with this query.

The query refers to a column called "player" but no column of that name exists. The column used
should be "username". This would make the query:

1 ������ B$���	���� � �C/���	�0

2 ���� B2�:�	 B � D������	� D�

3 8���# 1: B$���	����!

There is no equi-join to link the two tables, so the query will show the maximum score (821200) with
each unique value for username. This would produce an incorrect answer table of:

username MAX(score)

destroyer 821200
peach 821200
shocker 821200

© HERIOT-WATT UNIVERSITY

TOPIC 4. TESTING AND EVALUATION 97

To correct the query the equi-join is required. This would give the following SQL:

1 ������ B$���	���� � �C/���	�0

2 ���� B2�:�	 B � D������	� D�

3 ����� B$���	���� % D�$���	����

4 8���# 1: B$���	����!

This query now correctly produced an answer table containing two columns, username and
MAX(score), and is grouped on the username so that it will only display one row for each unique
value of username.

username MAX(score)

destroyer 299000
peach 625100
shocker 821200

Testing SQL operations

Ultimately, the SQL queries that you create should generate the required answer tables or output.

Do your INSERT, UPDATE and DELETE queries produce the intended results?
Do your SELECT queries generate answer tables which include the required data?

Activity: SQL operations

player

username realname password email message
terms�
and�
conditions

shocker Paul White pink10red paul@gamers.org
I want to play
competitively

on

peach Sally
McDonald

trustme1 sally@scott.org
I'm part of an
eSports team

on

destroyer Chloe
Davidson

shadow99 chloe@coders.org I love games on

gamescore

score�id username game score
625 shocker Massive RPG 726122
626 peach SuperJoe 102928

627 peach Massive RPG 625100
628 shocker Terra 1999 821200
629 destroyer Terra 1999 120001

630 peach SuperJoe 283102

630 destroyer SuperJoe 299000

© HERIOT-WATT UNIVERSITY

98 TOPIC 4. TESTING AND EVALUATION

game

game platform

Massive RPG X-station
SuperJoe S-box
Terra 1999 PC

Q1: Using the eSports database tables, identify which answer table would be created using
the SQL:

1 ������ B$���	���� � B2��=�	�

2 ���� D������	� D�� D��� D� B2�:�	 B

3 ����� D�$���	����%B$���	���� �� D�$D��� % D$D���!

a)

username platform

shocker PC
peach S-box
shocker X-station

b)

username platform

destroyer S-box
peach X-station
shocker X-station

c)

username platform

shocker X-station
peach S-box
peach X-station
shocker PC
destroyer PC
peach S-box
destroyer S-box

d)

username platform

destroyer X-station
peach X-station
shocker X-station

. .

© HERIOT-WATT UNIVERSITY

TOPIC 4. TESTING AND EVALUATION 99

Q2: Using the eSports database tables above, identify which answer table would be created
using the SQL:

1 ������ D$D���� D�$���	���� � ���;2 � �����D� � �C/���	�0

2 ���� B2�:�	 B� D������	� D�� D��� D

3 ����� ��	��@��5@���5;�;��� % &��&

4 �� D$D��� %D�$D���

5 �� D�$���	���� % B$���	����

6 8���# � D�$���	����

7 ����� � D�$���	���� ����!

a)

game username email message MAX(score)

Massive RPG shocker paul@gamers.org
I want to play
competitively 821200

SuperJoe peach sally@scott.com
I'm part of an
eSports team 625100

Terra 1999 destroyer chloe@coders.org I love games 299000

b)

game username email MAX(score)

Massive RPG shocker paul@gamers.org 821200

SuperJoe peach sally@scott.com 625100

Terra 1999 destroyer chloe@coders.org 299000

c)

game username email message MAX(score)

Terra 1999 destroyer chloe@coders.org I love games 299000

SuperJoe peach sally@scott.com
I'm part of an
eSports team 625100

Massive RPG shocker paul@gamers.org
I want to play
competitively 821200

d)

game username email message MAX(score)

Massive RPG shocker paul@gamers.org
I want to play
competitively 821200

Massive RPG peach sally@scott.com
I'm part of an
eSports team 625100

Massive RPG destroyer chloe@coders.org I love games 299000

. .

© HERIOT-WATT UNIVERSITY

100 TOPIC 4. TESTING AND EVALUATION

Q3: Using the eSports database tables above, identify which answer table would be created
using the SQL:

1 ������ " ���� B2�:�	

2 ����� ���	���� �
<� &5?& �� ���	���� �
<� &B?&!

a)

username realname password email message

terms�
and�
conditions

destroyer Chloe
Davidson

shadow99 chloe@coders.org I love games on

peach Sally
McDonald

trustme1 sally@scott.org
I'm part of an
eSports team

on

shocker
Paul
White

pink10red paul@gamers.org
I want to play
competitively

on

b)

username
destroyer

peach

c)
realname password email

Chloe Davidson shadow99 chloe@coders.org

Sally McDonald trustme1 sally@scott.org

d)

username realname password email message

terms�
and�
conditions

destroyer Chloe
Davidson

shadow99 chloe@coders.org I love games on

peach Sally
McDonald

trustme1 sally@scott.org
I'm part of an
eSports team

on

4.2 Evaluating SQL queries

From National 5 Computing Science you should already be familiar with queries which manipulate
data from two linked tables.

At Higher level you are asked to review the database solution you have developed and determine if
it is "fit for purpose" and produces the required "accuracy of output".

© HERIOT-WATT UNIVERSITY

TOPIC 4. TESTING AND EVALUATION 101

4.2.1 Fitness for purpose

When evaluating fitness for purpose, you are evaluating if the solution is "good enough to do the
task required".

For example, if the queries you have written present additional columns of data that were not
required, they would still likely be "fit for purpose" but the "accuracy of the output" may not be
suitable.

4.2.2 Accuracy of output

When evaluating the accuracy of output, you are considering if the output generated by your
solution, matches the specification.

Key questions would be:

• Are all the criteria required for the query applied?

• Are answer tables grouped using the intended columns?

• Are columns sorted correctly in ascending or descending order as required?

• Have equi-joins been used to link tables correctly?

• Where aliases are used, are they spelt correctly and used consistently?

• Are aggregated columns given aliases where required?

The accuracy of the output from your solution must be evaluated against the specification of
requirements. Compare what you actually produced with what you were asked to produce.

4.3 Learning points

Summary

You should now be able to:

• describe and exemplify testing of SQL operations, involving solutions using three or
more linked tables, to ensure they work correctly;

• evaluate your solution in terms of fitness for purpose and accuracy of output.

© HERIOT-WATT UNIVERSITY

102 TOPIC 4. TESTING AND EVALUATION

4.4 End of topic test

Go onlineEnd of topic 4 test

Q4: "Fitness for purpose" means that. . .

a) any user can use the solution presented.
b) the solution is still in a testing phase.
c) the solution is good enough to meet the required need.
d) the solution precisely and accurately meets all the requirements.

. .

Q5: Identify the query which will have produced this table:

Name Owner Hull Type Crew Max Speed

Lucky Lady H. Owen double 3 29
Gallant S. Scott double 5 28
Gretel W. Robertson double 4 28
Fulmar II J. Low single 3 14
Skylark J. Unwin single 2 14

Jasmin H. Owen triple 5 24
Ocean Flyer J. Low triple 6 22

a)

1 ������ ��;21���$���� � �6��	$�6��	 � ��;21���$H��22 �:B� H�

��;21���$�	�6 � ��;21���$H��G �B��5 H

2 ���� ��;21��� � �6��	

3 ����� ��;21���$�6��	
� % �6��	$�6��	
�

4 �� ��;21���$�	�6 � (�� ��;21���$�	�6 , �

5 �� ��;21���$H��G �B��5 H � +*

6 ����� � ��;21���$H��22 �:B� H �� � ��;21���$�	�6 ����!

b)

1 ������ ��;21���$���� � �6��	$�6��	 � ��;21���$H��22 �:B� H�

��;21���$�	�6 � ��;21���$H��G �B��5 H

2 ���� ��;21��� � �6��	

3 ����� ��;21���$�6��	
� % �6��	$�6��	
�

4 �� ��;21���$�	�6 � (�� ��;21���$�	�6 , �

5 �� ��;21���$H��G �B��5 H � +*

6 ����� � ��;21���$H��22 �:B� H ��!

c)

1 ������ ��;21���$���� � �6��	$�6��	 � ��;21���$H��22 �:B� H�

��;21���$�	�6 � ��;21���$H��G �B��5 H

2 ���� ��;21��� � �6��	

3 ����� ��;21���$�	�6 � (�� ��;21���$�	�6 , �

4 �� ��;21���$H��G �B��5 H � +*

5 ����� � ��;21���$H��22 �:B� H ��!

© HERIOT-WATT UNIVERSITY

TOPIC 4. TESTING AND EVALUATION 103

d)

1 ������ ��;21���$���� � �6��	$�6��	 � ��;21���$H��22 �:B� H�

��;21���$�	�6 � �C/��;21���$H��G �B��5 H0

2 ���� ��;21��� � �6��	

3 ����� ��;21���$�	�6 � (�� ��;21���$�	�6 , �

4 �� ��;21���$H��G �B��5 H � +*

5 8���# � �C/��;21���$H��G �B��5 H0

6 ����� � ��;21���$H��22 �:B� H ��!

. .

Q6: Identify the query which has been applied to this table of data...

Date of sale Item Purchased Customer Name Price of item
03/03/07 Lounge suite Mrs W Jackson 2395

04/03/07 Dining table set Mrs W Jackson 2100

01/03/07 Dining table set Mr D Macey 1595
02/03/07 Leather suite Miss L Mackie 945
05/03/07 King-size bed Mrs W Jackson 769

05/03/07 Cane swivel seat Mrs J Hetherington 375

02/03/07 Occasional tables Mrs J Hetherington 299

02/03/07 Coffee table Mrs J Hetherington 230

03/03/07 Standard lamp Ms R al-Jamali 89

... to produce this answer table.

Miss L Mackie 945
Mr D Macey 1595
Mrs J Hetherington 904
Mrs W Jackson 5264
Ms R al-Jamali 89

a)

1 ������ H�������	 ���� H� ���/H#	;�� �= ;��� H0

2 ���� ��2��

3 8���# � H�������	 ���� H!

b)

1 ������ " ���/H#	;�� �= ;��� H0

2 ���� ��2��

3 8���# � ���/H#	;�� �= ;��� H0!

c)

1 ������ H�������	 ���� H� H#	;�� �= ;��� H

2 ���� ��2��

3 ����� ���/H#	;�� �= ;��� H0

4 8���# � H�������	 ���� H!

© HERIOT-WATT UNIVERSITY

104 TOPIC 4. TESTING AND EVALUATION

d)

1 ������ H�������	 ���� H� ���/H#	;�� �= ;��� H0

2 ���� ��2��

3 8���# � H�������	 ���� H� ���/H#	;�� �= ;��� H0!

. .

Q7: "Accuracy of output" means that...

a) all numerical data is shown to at least two decimal places.
b) all data required is present in the given output.
c) query results are close enough so that required data can be visually identified.
d) the output generated exactly matches the requirements.

© HERIOT-WATT UNIVERSITY

105

Topic 5

End of unit test

106 TOPIC 5. END OF UNIT TEST

Go onlineEnd of unit 3 test

Use this diagram to answer Questions 1 and 2.

A database is designed as shown.

Q1: Which SQL statement will display the JobID of jobs allocated to a driver called 'Colin
Shaw'?

a)

1 ������ F�1
�

2 ���� F�1 F� 22�����5F�1 F� �	;4�	 �

3 ����� F$F�1
� % F$�	;4�	
�

4 �� F$F�1
�%�$�	;4�	
�

5 �� F$���� % H��2;� �'�6 H!

b)

1 ������ F�1
�

2 ���� F�1

3 ����� �	;4�	$���� % &��2;� �'�6&

4 F�
� 5	;4�	
� % F�1
�!

c)

1 ������ F�1
�

2 ���� F�1 F� 22�����5F�1 F� �	;4�	 �

3 ����� F$F�1
� % F$F�1
�

4 �� F$5	;4�	
�%�$�	;4�	
�

5 �� �$���� % H��2;� �'�6 H!

d)

1 ������ F�1
�

2 ���� F�1 F� 22�����5F�1 F� �	;4�	 �

3 ����� F$F�1
� % F$�	;4�	
�

4 �� F$F�1
�%�$�	;4�	
�

5 �� �$���� % H��2;� �'�6 H!

. .

© HERIOT-WATT UNIVERSITY

TOPIC 5. END OF UNIT TEST 107

Q2: Which SQL statement will display all the details about Jobs which are allocated to
driverID 1921 where the collectionAddress includes the "Aberdeen".
The list should show the driver name, vehicle, date, JobID and collectionAddress. The results
should be displayed so that the earliest job is listed first.

a)

1 ������ �	;4�	$����� �	;4�	$4�';�2� � H5��� H� F�1$F�1
� �

��22���;��55	���

2 ���� �	;4�	� 22�����5F�1 � F�1

3 ����� �	;4�	$5	;4�	
�%22�����5F�1$5	;4�	
�

4 �� 22�����5F�1$F�1
� % F�1$F�1
�

5 �� �	;4�	$5	;4�	
� % +7(+

6 �� ��22���;��55	��� �
<� &1�	5���&

7 ����� � H5��� H ��!

b)

1 ������ �	;4�	$����� �	;4�	$4�';�2� � H5��� H� F�1$F�1
� �

��22���;��55	���

2 ���� �	;4�	� 22�����5F�1 � F�1

3 ����� �	;4�	$5	;4�	
�%22�����5F�1$5	;4�	
�

4 �� 22�����5F�1$F�1
� % F�1$F�1
�

5 �� �	;4�	$5	;4�	
� % +7(+

6 �� ��22���;��55	��� �
<� &?1�	5���?&

7 ����� � H5��� H �� � H�;�� H ��!

c)

1 ������ �	;4�	$����� �	;4�	$4�';�2� � H5��� H� F�1$F�1
� �

��22���;��55	���

2 ���� �	;4�	� 22�����5F�1 � F�1

3 ����� �	;4�	$5	;4�	
�%22�����5F�1$5	;4�	
�

4 �� 22�����5F�1$F�1
� % F�1$F�1
�

5 �� �	;4�	$5	;4�	
� �
<� &?+7(+?&

6 �� ��22���;��55	��� �
<� &?1�	5���?&

7 ����� � H5��� H �� � H�;�� H ��!

d)

1 ������ F�1$����� �	;4�	$4�';�2� � 5��� � F�1$F�1
� �

��22���;��55	���

2 ���� �	;4�	� 22�����5F�1 � F�1

3 ����� �	;4�	$5	;4�	
�%22�����5F�1$5	;4�	
�

4 �� 22�����5F�1$F�1
� % F�1$F�1
�

5 �� �	;4�	$5	;4�	
� % +7(+

6 �� ��22���;��55	��� �
<� &?1�	5���?&

7 ����� � H5��� H �� � H�;�� H ��!

. .

© HERIOT-WATT UNIVERSITY

108 TOPIC 5. END OF UNIT TEST

Q3: Define the term "End Users" when considering the development of a system?

a) End users are the actual users who will operationally make use of the system.
b) End users are the client who will be paying for the system.
c) End users are the general public who would be interacting with the system.
d) End users are the system owners who have an interest in the system development.

. .

Q4: Read this scenario and then identify the End User(s).

Paul Jackson operates a skateboard design service. He custom builds skateboards for his
customer. He wants a system developed which will allow customers to select the parts,
supplied by various manufacturers, for their skateboards, pay for them and the build process
online. The system will then produce work jobs for Paul, so that he can build the boards with
the requested parts.

Identify who the end user(s) would be.

a) Customers
b) Paul Jackson
c) Manufacturers and Paul Jackson
d) Customers and Paul Jackson

. .

Q5: Define the term Functional Requirements.
Functional requirements. . .

a) are specific actions that the system must perform.
b) are how the system must work.
c) define the security of the system.
d) define the reliability of the system.

. .

Q6: In Agile development, the functional requirements are captured in the. . .

a) system design.
b) requirements specification.
c) product backlog.
d) outline hardware specification.

. .

© HERIOT-WATT UNIVERSITY

TOPIC 5. END OF UNIT TEST 109

Q7: How are functional requirements different from non-functional requirements?

a) Functional and non-functional requirements explain the quality requirements of system.
Non-functional requirements state which parts of the system should be measured and the
functional requirement detail how each part should be measured.

b) Functional requirements define what the system must do. Non-functional requirements
define how the system should behave.

c) Functional requirements detail how the modules of code in the system should be linked
to each other. Non-functional requirements detail how the documentation will be written.

d) Functional requirements are defined by the system owner only whereas non-functional
requirements can be suggested by anyone associated with the system.

. .

Q8: This is an entity-occurrence diagram that shows the links between instances in two
entities. What is the relationship between the two entites?

a) One-to-many
b) Many-to-many
c) One-to-one
d) Indeterminate

. .

© HERIOT-WATT UNIVERSITY

110 TOPIC 5. END OF UNIT TEST

Q9: Examine this data model and then identify the correct Entity Relationship Diagram for
this data model.
Table: Customer Table: Order Table: Salesperson Table: Supervisor
cust�id order�code sales�id sup�id

cust�name item�name grade dept

cust�address Price date�employed

cust�tel�no cust�id* sup�id*

credit�limit sales�id*

saledate

a)

b)

c)

d)

. .

© HERIOT-WATT UNIVERSITY

TOPIC 5. END OF UNIT TEST 111

Q10: Senior Pupil Tutors at Someplace Academy attend classes to provide extra support for
teachers. Any class in the school may have one, two or more tutors allocated to it and tutors
can go to more than one class.
Which Entity Occurrence Diagram is correctly identifies the relationship between Tutors and
Classes?

a)

b)

c)

d)

© HERIOT-WATT UNIVERSITY

112 TOPIC 5. END OF UNIT TEST

. .

Q11: MIN is a functional of relational database. Identify the four other aggregate functions of
database that you should be familiar with.

a) MOST, MEAN, TOTAL, NUMBEROF
b) MAX, MEDIAN, SUM, COUNT
c) MAX, AVG, SUM, COUNT
d) LEVEL, AVG, TOTAL, NUMBEROF

. .

Q12: Which of these statements is the correct definition of a primary key?

a) An attribute that is the same for all the entities.
b) The longest attribute within an entity.
c) The shortest attribute within an entity.
d) An attribute that has a unique value for each entity.

. .

Q13: Which of these statements is the correct definition of a foreign key?

a) An attribute that is the primary key of another entity set.
b) The attribute field within an entity.
c) The most important attribute in an entity.
d) An attribute in a foreign language.

. .

Q14: A compound key is. . .

a) a combination of a primary and foreign key to link to entity sets.
b) a combination of more than one attribute to uniquely identify an entity.
c) an attribute of the entity that is important and will be indexed to ensure fast access within

search.
d) an unique identifier for an entity that consists on a single attribute.

© HERIOT-WATT UNIVERSITY

TOPIC 5. END OF UNIT TEST 113

Use this diagram to answer Questions 15, 16, 17 and 18.

Examine this ERD. It records each goal stored in a football game. It also holds the stadium
where the game was played and who the home and away teams were. The details of the
team; their name and coach, is also held.

Q15: An SQL query is required to show the player, team, coach and gtime for all goals scored
in the first 10 minutes of a game. Identify the correct SQL query.

a)

1 ������ B2�:�	� �������� � ����' � D�;��

2 ���� D��2 � D���� ����

3 ����� D���$D���
� % D��2$D���
�

4 �� D���$'�������
� % ����$����
�

5 �� D���$�6�:����
� % ����$����
�

6 �� D�;�� ,%+�!

b)

1 ������ B2�:�	� �������� � ����' � D�;��

2 ���� D��2 � D���� ����

3 ����� D���$D���
� % D��2$D���
�

4 �� D��2$����
� % ����$����
�

5 �� D�;�� ,%+�!

c)

1 ������ B2�:�	� �������� � ����' � D�;��

2 ���� D��2 � D���� ����

3 ����� D���$D���
� % D��2$D���
�

4 �� D���$'�������
� % ����$����
�

5 �� D�;�� ,%+�!

© HERIOT-WATT UNIVERSITY

114 TOPIC 5. END OF UNIT TEST

d)

1 ������ B2�:�	� �������� � ����' � D�;��

2 ���� D��2� D��� � ����

3 ����� D���$D���
� % D��2$D���
�

4 �� D���$�6�:����
� % ����$����
�

5 �� D�;�� ,%+�!

. .

Q16: An SQL query is required to show all the players and the total goals they scored in each
stadium. Identify the correct SQL query.

a)

1 ������ B2�:�	� ���5;��� ���/"0 �� 8��2�

2 ���� 8���� 8��2

3 ����� D���$D���
� % D��2$D���
�

4 8���# � B2�:�	� ���5;��!

b)

1 ������ B2�:�	� ���5;��� ���/"0 �� 8��2�

2 ���� 8���� 8��2

3 ����� D���$D���
� % D��2$D���
�

4 8���# � ���5;��� B2�:�	!

c)

1 ������ "� �����/"0 �� 8��2�

2 ���� 8���� 8��2

3 ����� D���$D���
� % D��2$D���
�

4 8���# � B2�:�	� ���5;��!

d)

1 ������ B2�:�	� ���5;��� �����/"0 �� 8��2�

2 ���� 8���� 8��2

3 ����� D���$D���
� % D��2$D���
�

4 8���# � B2�:�	� ���5;��!

. .

© HERIOT-WATT UNIVERSITY

TOPIC 5. END OF UNIT TEST 115

Q17: An SQL query is required to show the gameID and player for all goals scored by the
team with a teamID value of "IRL". Identify the correct SQL query.

a)

1 ������ D���
�� B2�:�	

2 ���� 8��� � 8��2

3 ����� D���$D���
� % D��2$D���
�

4 �� ����
� % &
��&!

b)

1 ������ "

2 ���� 8��� � 8��2

3 ����� '�������
� % ����$����
�

4 �� ����
� % &
��&!

c)

1 ������ D���
�� B2�:�	

2 ���� 8��� � 8��2

3 ����� D���$D���
� % D��2$D���
�

4 �
�� ����
� % &
��&!

d)

1 ������ D���
�� B2�:�	

2 ���� 8��� � 8��2

3 ����� D���$D���
� % D��2$D���
�

4 �� �������� % &
��&!

. .

Q18: An SQL query is required to show the "gdate" of games and name of the teams in which
"Fernando Santos" is was the hometeam coach. Identify the correct SQL query.

a)

1 ������ D5��� � ��������

2 ���� 8��� � ����

3 ����� 8���$'�������
� % ����$����
�

4 �� ����' % &��	���5� ������&!

b)

1 ������ "

2 ���� 8��� � ����

3 ����� 8���$�6�:����
� % ����$����
�

4 �� ����' % &��	���5� ������&!

c)

1 ������ D5��� � ��������

2 ���� 8��� � ����

3 ����� 8���$'�������
� % ����$����
�

4 �� ����' �
<� &?������ ?&!

© HERIOT-WATT UNIVERSITY

116 TOPIC 5. END OF UNIT TEST

d)

1 ������ D5��� � ��������

2 ���� 8���� ����

3 ����� 8���$'�������
� % 8��2$����
�

4 �� ����' % &��	���5� ������&!

. .

Q19: A query will calculate subtotal for an online order. It will use the columns "quantity" and
"itemPrice" from a table called "ShoppingCart". It will also calculate the VAT to be paid as 20%
of the amount to pay from this subtotal. Select the correct SQL to perform this calculation.

a)

1 ������ /K����;�:";���#	;��0 � ��1����2 � ��1����2"(�J+�� � 3�

2 ���� ��	�!

b)

1 ������ ��1����2 � /��1����2"(�J+��0 � 3� ����

2 /

3 ������ /K����;�:";���#	;��0 � ��1����2 ���� ��	�

4 0

5 �� ��2��2���5��	�!

c)

1 ������ /K����;�:";���#	;��0 ����

2 /

3 ������ /��1����2"(�J+��0 � 3� ���� ��	�

4 0

5 �� ��2��2���5��	�!

d)

1 ������ /K����;�:";���#	;��0 � ��1����2 �

2 /K����;�:";���#	;��0"(�J+�� � 3�

3 ���� ��	�!

. .

© HERIOT-WATT UNIVERSITY

TOPIC 5. END OF UNIT TEST 117

Q20: A query is run against the two tables shown.

competition

competitionID country venue eventDate

1 UK Southport 13/05/2018
2 Switzerland Bern 29/08/2018
3 Canada Montreal 08/09/2018
.

entryticket

competitionID Team Placing PrizeValue
1 GoGames Gold 20
1 XForceLite Silver 15
1 TrashCans Bronze 10
2 XForceLite Gold 30
2 Question101 Silver 10
2 TrashCans Bronze 0
3 GoGames Silver 40
...

The query:

1 ������ �����	: � ���/#	;E�3�2��0

2 ���� ���B��;�;�� � ���	:�;�9��

3 ����� ���B��;�;��$���B��;�;��
� % ���	:�;�9��$���B��;�;��
�

4 8���# � �����	:!

What is the purpose of the GROUP BY line of the SQL statement?

a) To enforce referential integrity.
b) To allow aggregation of data using COUNT.
c) To group results by country so that each country only appears once.
d) To establish a one-to-many grouped relationship.

. .

© HERIOT-WATT UNIVERSITY

118 TOPIC 5. END OF UNIT TEST

Q21: Identify the query which will have produced this table:

Name Owner Hull Type Crew Max Speed

Lucky Lady H. Owen double 3 29
Gallant S. Scott double 5 28
Gretel W. Robertson double 4 28
Fulmar II J. Low single 3 14
Skylark J. Unwin single 2 14

Jasmin H. Owen triple 5 24
Ocean Flyer J. Low triple 6 22

a)

1 ������ ��;21���$���� � �6��	$�6��	 � ��;21���$H��22 �:B� H�

��;21���$�	�6 � ��;21���$H��G �B��5 H

2 ���� ��;21��� � �6��	

3 ����� ��;21���$�6��	
� % �6��	$�6��	
�

4 �� ��;21���$�	�6 � (�� ��;21���$�	�6 , �

5 �� ��;21���$H��G �B��5 H � +*

6 ����� � ��;21���$H��22 �:B� H �� � ��;21���$�	�6 ����!

b)

1 ������ ��;21���$���� � �6��	$�6��	 � ��;21���$H��22 �:B� H�

��;21���$�	�6 � ��;21���$H��G �B��5 H

2 ���� ��;21��� � �6��	

3 ����� ��;21���$�	�6 � (�� ��;21���$�	�6 , �

4 �� ��;21���$H��G �B��5 H � +*

5 ����� � ��;21���$H��22 �:B� H ��!

c)

1 ������ ��;21���$���� � �6��	$�6��	 � ��;21���$H��22 �:B� H�

��;21���$�	�6 � ��;21���$H��G �B��5 H

2 ���� ��;21��� � �6��	

3 ����� ��;21���$�6��	
� % �6��	$�6��	
�

4 �� ��;21���$�	�6 � (�� ��;21���$�	�6 , �

5 �� ��;21���$H��G �B��5 H � +*

6 ����� � ��;21���$H��22 �:B� H ��!

d)

1 ������ ��;21���$���� � �6��	$�6��	 � ��;21���$H��22 �:B� H�

��;21���$�	�6 � �C/��;21���$H��G �B��5 H0

2 ���� ��;21��� � �6��	

3 ����� ��;21���$�	�6 � (�� ��;21���$�	�6 , �

4 �� ��;21���$H��G �B��5 H � +*

5 8���# � �C/��;21���$H��G �B��5 H0

6 ����� � ��;21���$H��22 �:B� H ��!

© HERIOT-WATT UNIVERSITY

GLOSSARY 119

Glossary

*AMP

A combination operating system, Apache web sever, MySQL/MariaDB and PHP commonly
used to provide web services.

accuracy of output

the output generated by a solution, matches the specification exactly, based on the data
available.

Answer table

this is produced when a query runs

Boolean

a value which can only be true or false

Cardinality

the type of relationship between tables in a relational database: 1:1, 1:many or many:many

Cell

the intersection of a column and a row in database table

Data

any information in a form that can be processed by a computer system

Database

a collection of information stored in a structured format that can be quickly searched or sorted

Data dictionary

a detailed list of data structures and relationships in a programming project

Date

a representation of dates as a data type

Domain

the permitted values of an attribute, for example a type of data (text, numeric, Boolean) and/or
a range of numbers, dates, times

End user

the person who makes use of a system by interacting with it directly

Entity

something that exists as a particular and discrete form

Entity occurrence diagram

a diagramming tool which can be used to identify the relationships between different entity
sets

Entity relationship diagram

(ERD) a data modelling technique that graphically illustrates an information system's entities
and the relationships between those entities

© HERIOT-WATT UNIVERSITY

120 GLOSSARY

Entity set

a collection of entities of similar form represented in a database as a table

Field

one piece of information in a record

fitness for purpose

the solution is "good enough to do the task required".

Foreign key

the primary key of a separate table that is included in a table

Functional requirements

a description of what a system must do

Grouping

gathering together the rows of a table or answer table based on a column or columns with the
same value or values

Number

any representation of numbers: integers or real numbers

Primary key

an attribute of an entity that can be used to unique identify it. Within a database, a primary key
is a column or columns with a unique value for each row of the database table

Product backlog

in Agile development methodologies, a product backlog details the features of the software
which are to be developed

Query

performing a complex search or sort on a database

referential integrity

Defines that the relationship between two tables should always be consistent. A foreign key
is a primary key value from another table and must have a related value or the database is
inconsistent.

Relational database

a database that contains more than one linked table

Relational database management system

(RDBMS) a system for creating and managing relational databases

Relationship

the association between two entity sets - these are either one-to-one, one-to-many or many-
to-many

Requirements specification

in interactive development approaches, the requirements specification details what the system
is required to do

© HERIOT-WATT UNIVERSITY

GLOSSARY 121

System owner

the organisation or individual who has commissioned a system to be developed or who has
ownership of a system already in place

Text

refers to any data stored as strings of characters using ASCII, UNICODE or another text
representation

Time

time represented as a data type

Validation

a rule or rules used to ensure that data entered is what was expected

© HERIOT-WATT UNIVERSITY

122 ANSWERS: UNIT 3 TOPIC 1

Answers to questions and activities

Topic 1: Analysis

Activity: End user scenarios (page 3)

Q1: d) The showroom staff.

Q2: a) Both Amir and the holidaymakers.

Q3: c) Visitors to the library

End of Topic 1 test (page 8)

Q4: c) The system will be protected by an authentication system to prevent unauthorised access.

Q5: c) Systems analyst

Q6: b) Functional requirements define what the system must do. Non-functional requirements
define how the system should behave.

© HERIOT-WATT UNIVERSITY

ANSWERS: UNIT 3 TOPIC 2 123

Topic 2: Design

Activity: Attribute types and size (page 16)

Q1:

Attribute Example Data type

Surname Toner Text

First name Geraldo Text

Postcode TD7 0EG Text

SQA candidate number 2311447853 Text

Enrollment fee paid £27.50 Number

All documents received True Boolean

Enrolment date 23/03/14 Date

Course begins at 19:30 Time

Qualification credit value 24 Number

Activity: Validation (page 17)

Q2: d) Range

Q3: c) Field Length

Q4: a) Presence check

Q5: b) Restricted Choice

Quiz: Introduction (page 27)

Q6: A column must have a unique name.

All the data in a column must be of the same type.

The order of columns in the table isn't important.

Q7: A flat database will only contain one table whereas a relational database will contain more
than one.

Q8: b) No

© HERIOT-WATT UNIVERSITY

124 ANSWERS: UNIT 3 TOPIC 2

Activity: Many-to-many (2) (page 32)

Q9:

Entity 1 Entity 2 Relationship

School Head Teacher 1-to-1

Teacher Course many-to-many

Classroom Desk 1-to-many

School Swimming pool 1-to-1

Pupil Exam many-to-many

Quiz: Relationships (page 32)

Q10:

1. An entity is something about which we want to store information.

2. An attribute is a characteristic of an entity, it is a piece of information about that entity.

3. A relationship defines how two entities are related. Entities can be related as one-to-one,
one-to-many or many-to-many.

Q11:

Activity: Entity Occurrence Diagrams (page 37)

Q12:

Product 1:M OrderLine
OrderLine M:1 Order
Order M:1 Customer

ProductID
928
921
922

1029

OrderLineID
10282
10283
10284
10285
10286
10287

OrderNo
128
129
130

CustomerID
7619
7900
130

Quiz: Compound keys (page 41)

Q13: competitionID and position

© HERIOT-WATT UNIVERSITY

ANSWERS: UNIT 3 TOPIC 2 125

Quiz: Entity relationship diagrams (page 42)

Q14:

Q15:

© HERIOT-WATT UNIVERSITY

126 ANSWERS: UNIT 3 TOPIC 2

Q16:

End of Topic 2 test (page 52)

Q17: d) An attribute that has a unique value for each entity.

Q18: a) An attribute that is the primary key of another entity set.

Q19: b) One-to-several

Q20: c) gathers together the rows of a table or answer table based on a column or columns with
the same value or values.

Q21: b) a combination of more than one attribute to uniquely identify an entity.

© HERIOT-WATT UNIVERSITY

ANSWERS: UNIT 3 TOPIC 3 127

Topic 3: Implementation

Activity: Using SELECT (1) (page 62)

Q1: ������ � �	
� ����

Activity: Using SELECT (2) (page 62)

Q2: ������ ����� �	
� ����

Activity: Using SELECT (3) (page 62)

Q3: ������ ������ ���������� �	
� ����

Activity: Using SELECT (4) (page 62)

Q4: ������ � �	
� ���� ��� ���	� ���9����� ' ���9������

Activity: Using SELECT (5) (page 63)

Q5:

1 ������ " ���� ���	 � #���

2 ����� ���	$���	
� % #���$���	
�

3 �� #���
� % (.+�-)!

Activity: Using SELECT (6) (page 63)

Q6:

1 ������ " ���� #���

2 ����� #���
� , (.+�>7!

Activity: Using SELECT (7) (page 64)

Q7:

1 ������ #���
�� #���������� ���� #���

2 ����� #���
� , (.+�((�� #���
� � (.+7->!

Activity: Using SELECT (8) (page 64)

Q8:

© HERIOT-WATT UNIVERSITY

128 ANSWERS: UNIT 3 TOPIC 3

1 ������ ���������� � #���������� ���� ���	� #���

2 ����� ���	$���	
� % #���$���	
�

3 �� /#���
� % (.+.(+ �� #���
� % (.+.(70!

Activity: Using SELECT (9) (page 64)

Q9:

1 ������ "

2 ���� #���

3 ����� � ���	
� ��!

Activity: Using SELECT (10) (page 65)

Q10:

1 ������ "

2 ���� #���

3 ����� � ���	
� ���� � #���������� ��!

Activity: Using SELECT (11) (page 65)

Q11:

1 ������ "

2 ���� #���

3 ����� #���
� � (.+7-(

4 ����� � ���	
� �� � #���������� ����!

© HERIOT-WATT UNIVERSITY

ANSWERS: UNIT 3 TOPIC 3 129

Activity: Using SELECT (12) (page 65)

Q12:

1 ������ ���	$���	
�� #���
�

2 ���� ���	� #���

3 ����� ���	$���	
� % #���$���	
� �� ���	$���	
� � �()-)

4 ����� � ���	$���	
� �� � #���
� ��!

Alternative answer:

1 ������ #���$���	
�� #���
�

2 ���� ���	� #���

3 ����� ���	$���	
� % #���$���	
� �� #���$���	
� � �()-)

4 ����� � ���	$���	
� �� � #���
� ��!

Activity: Using INSERT (1) (page 67)

Q13:

1
�����
��� ���	

2 3���� /�())(� &8��5+�+&0!

Activity: Using INSERT (2) (page 67)

Q14:

1
�����
��� #���

2 3���� /�())(� (.+7-. � &
 �� ���5 � ��		 ��	D�	 �9;�LL&0!

Activity: Using UPDATE (1) (page 69)

Q15:

1 �#��� ���	

2 ��� ���������� % &��'�����	&

3 ����� ���������� % &M�;�����&!

Activity: Using UPDATE (2) (page 70)

Q16:

1 �#��� #���

2 ��� ���	
� % �()>-

3 ����� ���	
� % �()*>!

© HERIOT-WATT UNIVERSITY

130 ANSWERS: UNIT 3 TOPIC 3

Activity: Using UPDATE (3) (page 70)

Q17:

1 �#��� #���

2 ��� #���������� % &���� 2��4� ;� ����24�5$&

3 ����� #���
� % (.+�-.!

Activity: Using DELETE (1) (page 71)

Q18:

1 ������ ���� #���

2 ����� #���
5 % (.+7->!

Activity: Using DELETE (2) (page 71)

Q19:

1 ������ ���� ���	

2 ����� ���	
� % �())�!

3
4 ������ ���� #���

5 ����� ���	
� % �())�!

Activity: Using DELETE (3) (page 72)

Q20:

1 ������ ���� #���

2 ����� #���
� � (.+�7- �� #���
� , (.+.�(!

Activity: Using DELETE (4) (page 72)

Q21:

1 ������ ���� #���

2 ����� #���
� % (.+.*. �� #���
� % (.+.>+ �� #���
� % (.+.>*!

Activity: Using Wildcards (page 75)

Q22:

1 ������ ;5� �;�2� ���� ��4;�

2 ����� �;�2� �
<� &���	 ��	�?&!

© HERIOT-WATT UNIVERSITY

ANSWERS: UNIT 3 TOPIC 3 131

Q23:

1 ������ ;5� �;�2� ���� ��4;�

2 ����� �;�2� �
<� &@@@&!

Q24:

1 ������ ;5� �;�2� ���� ��4;�

2 ����� �;�2� �
<� &?#�	�@@&!

Activity: Using MIN (page 80)

Q25:

1 ������ �
�/D	���0 ���� ��4;�

2 ����� 1�5D��
� ��� ���� �� D	���
� ��� ����!

Activity: Using MAX (page 80)

Q26:

1 ������ �;�2� � :��	

2 ���� ��4;�

3 ����� :��	 % /������ �C/:��	0 =	�� ��4;�0!

Activity: Using AVG (page 81)

Q27:

a)

1 ������ 38/D	���0 ���� ��4;�

2 ����� D	���
� ��� ����!

b)

1 ������ 38/1�5D��0 ���� ��4;�

2 ����� :��	 % +7�-!

Activity: Using SUM (page 81)

Q28:

1 ������ ���/D	���0 ���� ��4;�

2 ����� :��	 % +777!

© HERIOT-WATT UNIVERSITY

132 ANSWERS: UNIT 3 TOPIC 3

Activity: Using COUNT (page 81)

Q29:

1 ������ �����/"0

2 ���� ��4;�

3 ����� :��	 � +7�> �� :��	 , +7.�!

Activity: Using computed values (1) (page 82)

Q30:

1 ������ �;�2� � :��	 � D	���J1�5D�� � &���;�&

2 ���� ��4;�

3 ����� :��	 % (��+ �� 1�5D��
� ��� ���� �� D	���
� ��� ���� ��

D	���J1�5D�� % /

4 ������ �C/D	���J1�5D��0

5 ���� ��4;�

6 ����� :��	 % (��+ �� 1�5D��
� ��� ���� �� D	���
� ��� ����

7 0!

Activity: Using computed values (2) (page 83)

Q31:

1 ������ �;�2� � 1�5D�� "+-J+�� � &��G 5��&

2 ���� ��4;�

3 ����� �;�2� �
<� &?8�25?& �� 1�5D��
� ��� ����

4 �� D	���
� ��� ����!

Activity: Using GROUP BY (page 85)

Q32:

1 ������ :��	 � ���/1�5D��0 � &��4;� ��5D��&

2 ���� ��4;�

3 ����� 1�5D��
� ��� ����

4 8���# � :��	!

Q33:

1 ������ �;�2� � �����/"0 � &����2 ����&

2 ���� ��4;� � ����;�D

3 ����� ��4;�$;5 % ����;�D$��4;�;5 �� 1�5D�� � +.�������

4 8���# � �;�2�!

© HERIOT-WATT UNIVERSITY

ANSWERS: UNIT 3 TOPIC 3 133

Q34:

1 ������ ���� � �����/"0 � &����&

2 ���� ����	 � ����;�D� ��4;�

3 ����� ����	$;5 % ����;�D$����	;5 ��

4 ����;�D$��4;�;5 % ��4;�$;5 ��

5 �	5%+

6 8���# � ����	$;5

7 ����� � ���� ����!

Activity: Using ORDER BY (page 85)

Q35:

1 ������ ���� � �����/"0 �� &���1�	�=��4;��&� :��	

2 ���� ����	 � ����;�D� ��4;�

3 ����� ����	$;5 % ����;�D$����	;5 �� ��4;�$;5 % ����;�D$��4;�;5

4 8���# � ����� :��	

5 ����� 1: ���1�	�=��4;�� ���� � :��	 ��!

Q36:

1 ������ �;�2� � �����/"0 � &����2 ����&

2 ���� ��4;� � ����;�D

3 ����� ��4;�$;5 % ����;�D$��4;�;5 �� 1�5D�� � +.�������

4 8���# � �;�2�

5 ����� � �;�2� ��!

Q37:

1 ������ "

2 ���� ��4;�

3 ����� � :��	 �� � 1�5D�� ���� � D	��� ����!

End of topic 3 test (page 87)

Q38: a) ������ � �	
� *����6 ���	� � �3 ' ����!���
	 � �3'�8.�+�5��

Q39: a)

1 ������ ���==�� � 2����

2 ���� ���== � 1	���'

3 ����� ���==$1	���'�� % 1	���'$1	���'��

4 �� 1	���'$��	��� % H+* ��;� ���5 H!

Q40: c)

1 ������ " ���� 1	���'� B	�B�	�:��	����

2 ����� 1	���'��$�;�: % H�5;�1�	D' H

3 �� B	�B�	�:��	����$1	���'�� % 1	���'$1	���'��!

© HERIOT-WATT UNIVERSITY

134 ANSWERS: UNIT 3 TOPIC 3

Q41: d)

1 ������ =���� � 2���� � �C/�����2��2�	:0 ���� ���== � 1	���'

2 ����� ���==$1	���'�� % 1	���'$1	���'�� �� �;�: % H82��D�6 H!

Q42: b) ������ � �	
� �. ��� ���	� ��:���� < &$$�

Q43: a) ������ � �	
� !�-�.�;�� ���	� 1 ������ ��"� ��0��

Q44: c) ������ � �	
� !�-�.�;��
	��	 <= 1 ������ �����

Q45: b) ������ �	
� !�-�.�;�� ���	� 1 ������ ' ��������

Q46: c)

type most expensive

SUV 73000
Coupe 75000

Q47: c) To group results by country so that each country only appears once.

© HERIOT-WATT UNIVERSITY

ANSWERS: UNIT 3 TOPIC 4 135

Topic 4: Testing and evaluation

Activity: SQL operations (page 97)

Q1: c)

username platform

shocker X-station
peach S-box
peach X-station
shocker PC
destroyer PC
peach S-box
destroyer S-box

Q2: a)

game username email message MAX(score)

Massive RPG shocker paul@gamers.org
I want to play
competitively 821200

SuperJoe peach sally@scott.com
I'm part of an
eSports team 625100

Terra 1999 destroyer chloe@coders.org I love games 299000

Q3: d)

username realname password email message
terms�
and�
conditions

destroyer Chloe
Davidson

shadow99 chloe@coders.org I love games on

peach Sally
McDonald

trustme1 sally@scott.org
I'm part of an
eSports team

on

End of topic 4 test (page 102)

Q4: c) the solution is good enough to meet the required need.

Q5: b)

1 ������ ��;21���$����� �6��	$�6��	 � ��;21���$H��22 �:B�H� ��;21���$�	�6 �

��;21���$H��G �B��5 H

2 ���� ��;21��� � �6��	

3 ����� ��;21���$�6��	
� % �6��	$�6��	
�

4 �� ��;21���$�	�6 � (�� ��;21���$�	�6 , �

5 �� ��;21���$H��G �B��5 H � +*

6 ����� � ��;21���$H��22 �:B�H ��!

Q6: a)

© HERIOT-WATT UNIVERSITY

136 ANSWERS: UNIT 3 TOPIC 4

1 ������ H�������	 ����H� ���/H#	;�� �= ;��� H0

2 ���� ��2��

3 8���# � H�������	 ���� H!

Q7: d) the output generated exactly matches the requirements.

© HERIOT-WATT UNIVERSITY

ANSWERS: UNIT 3 TOPIC 5 137

Topic 5: End of unit test

End of unit 3 test (page 106)

Q1: c)

1 ������ F�1
�

2 ���� F�1 F� 22�����5F�1 F� �	;4�	 �

3 ����� F$F�1
� % F$F�1
�

4 �� F$5	;4�	
�%�$�	;4�	
�

5 �� �$���� % H��2;� �'�6 H!

Q2: b)

1 ������ �	;4�	$���� � �	;4�	$4�';�2� � H5��� H� F�1$F�1
� � ��22���;��55	���

2 ���� �	;4�	� 22�����5F�1 � F�1

3 ����� �	;4�	$5	;4�	
�%22�����5F�1$5	;4�	
�

4 �� 22�����5F�1$F�1
� % F�1$F�1
�

5 �� �	;4�	$5	;4�	
� % +7(+

6 �� ��22���;��55	��� �
<� &?1�	5���?&

7 ����� � H5���H �� � H�;�� H ��!

Q3: a) End users are the actual users who will operationally make use of the system.

Q4: d) Customers and Paul Jackson

Q5: a) are specific actions that the system must perform.

Q6: c) product backlog.

Q7: b) Functional requirements define what the system must do. Non-functional requirements
define how the system should behave.

Q8: c) One-to-one

Q9: d)

Q10: b)

© HERIOT-WATT UNIVERSITY

138 ANSWERS: UNIT 3 TOPIC 5

Q11: c) MAX, AVG, SUM, COUNT

Q12: d) An attribute that has a unique value for each entity.

Q13: a) An attribute that is the primary key of another entity set.

Q14: b) a combination of more than one attribute to uniquely identify an entity.

Q15: b)

1 ������ B2�:�	� �������� � ����' � D�;��

2 ���� D��2 � D��� � ����

3 ����� D���$D���
� % D��2$D���
�

4 �� D��2$����
� % ����$����
�

5 �� D�;�� ,%+�!

Q16: d)

1 ������ B2�:�	� ���5;�� � �����/"0 �� 8��2�

2 ���� 8��� � 8��2

3 ����� D���$D���
� % D��2$D���
�

4 8���# � B2�:�	� ���5;��!

Q17: a)

1 ������ D���
�� B2�:�	

2 ���� 8��� � 8��2

3 ����� D���$D���
� % D��2$D���
�

4 �� ����
� % &
��&!

Q18: a)

1 ������ D5��� � ��������

2 ���� 8��� � ����

3 ����� 8���$'�������
� % ����$����
�

4 �� ����' % &��	���5� ������ &!

© HERIOT-WATT UNIVERSITY

ANSWERS: UNIT 3 TOPIC 5 139

Q19: b)

1 ������ ��1����2 � /��1����2"(�J+��0 � 3� ����

2 /

3 ������ /K����;�:";���#	;��0 � ��1����2 ���� ��	�

4 0

5 �� ��2��2���5��	�!

Q20: c) To group results by country so that each country only appears once.

Q21: c)

1 ������ ��;21���$����� �6��	$�6��	 � ��;21���$H��22 �:B�H� ��;21���$�	�6 �

��;21���$H��G �B��5 H

2 ���� ��;21��� � �6��	

3 ����� ��;21���$�6��	
� % �6��	$�6��	
�

4 �� ��;21���$�	�6 � (�� ��;21���$�	�6 , �

5 �� ��;21���$H��G �B��5 H � +*

6 ����� � ��;21���$H��22 �:B�H ��!

© HERIOT-WATT UNIVERSITY

	Analysis
	Introduction
	End users
	Functional requirements
	Learning points
	End of topic test

	Design
	Introduction
	The relational model
	Relationships
	Entity-occurrence diagrams
	Compound keys
	Entity relationship diagrams
	Solutions to queries
	Learning points
	End of topic test

	Implementation
	Application software
	Introduction
	Example database
	SQL Wildcards
	Table and column aliases
	Using sub-queries
	SQL aggregate functions (MIN, MAX, AVG, SUM, COUNT)
	Computed values
	GROUP BY
	ORDER BY
	Learning points
	End of topic test

	Testing and evaluation
	Testing SQL queries
	Evaluating SQL queries
	Learning points
	End of topic test

	End of unit test
	Glossary
	Answers to questions and activities

