Higher Mathematics - Revision

Equation of a Line:

1. Find the equation of the line parallel to the line $3 x+2 y-10=0$ which passes through the point $(-1,4)$.
2. Find the equation of the line through the point $(2,-5)$ perpendicular to the line AB where A is $(4,1)$ and B is $(6,-3)$.
3. Find, a^{0}, the angle the line $2 x+y=3$ makes with the positive direction of the x -axis.

4. Triangle ABC has vertices $\mathrm{A}(2,-5), \mathrm{B}(8,1)$ and $\mathrm{C}(7,2)$.

Find the equation of the median from C.
5. A is the point $(2,-1), \mathrm{B}$ is $(10,-5)$ and C is $(6,2)$.
(a) Find the equation of the perpendicular bisector of AB .
(b) Find the equation of the altitude from B to AC .
(c) Find the point of intersection of these lines.

Graphical Functions:

6. The diagram opposite shows the graph of $y=f(x)$.
(a) Sketch the graph of $y=-f(x)+3$
(b) Sketch the graph of $y=-3(x-2)$

Composition of Functions:

7. The functions $f(x)$ and $g(x)$ are defined on suitable domains with

$$
f(x)=\frac{3 x-4}{x} \quad \text { and } \quad g(x)=\frac{4}{3-x}
$$

(a) Find a formula for $\mathrm{g}(\mathrm{f}(\mathrm{x}))$.
(b) State the connection between $f(x)$ and $g(x)$.
8. $f(x)=x^{2}-x-12$ and $g(x)=3 x+1$
(a) Find a formula for $f(g(x))$.
(b) Solve $\mathrm{f}(\mathrm{g}(\mathrm{x}))=0$.
(c) State a suitable domain for the function $\mathrm{h}(\mathrm{x})$ where $\mathrm{h}(\mathrm{x})=\frac{1}{\mathrm{f}(\mathrm{g}(\mathrm{x}))}$

Recurrence Relations:

9. $u_{n+1}=0.6 u_{n}+20 \quad u_{o}=40$
(a) Find n such that $\mathrm{u}_{\mathrm{n}}>49$
(b) Explain why u_{n+1} has a limit and find the exact value of this limit.
10. A recurrence relation is defined as $u_{n}=a u_{n-1}+b$.

The first three terms of this relation are 160,200 and 230.
Find the values of a and b.
11. A recurrence relation is $\mathrm{u}_{\mathrm{n}+1}=0.5 \mathrm{u}_{\mathrm{n}}+10$.

Given $u_{3}=30$, find the value of u_{1}.
12. Two sequences are defined by the recurrence relations

$$
\mathrm{u}_{\mathrm{n}+1}=0.4 \mathrm{u}_{\mathrm{n}}+\mathrm{p} \quad \mathrm{v}_{\mathrm{n}+1}=0.6 \mathrm{v}_{\mathrm{n}}+\mathrm{q}
$$

If both sequences have the same limit, express p in terms of q.
13. A patient is injected with 60 ml of an antibiotic drug. Every 4 hours 30% of the drug passes out of her bloodstream. To compensate for this an extra 20 ml of antibiotic is given every 4 hours.
(a) Find a recurrence relation for the amount of drug in the patient's bloodstream.
(b) Calculate the amount of antibiotic remaining in the bloodstream after one day.

Differentiation:

14. $f(x)=\frac{x^{2}-1}{\sqrt{x}}$. Find $f^{\prime}(4)$.
15. $s=3 u\left(u^{2}+1\right)$. Find the rate of change of s when $u=\frac{4}{3}$
16. Find the equation of the tangent to the curve $y=\frac{x^{2}\left(x^{2}-2\right)}{x}$ at the point where $\mathrm{x}=2$.
17. A tangent to the curve $y=x^{4}-2 x$ has gradient -6 . Find the equation of this tangent.
18. Show that the curve $y=x^{3}-6 x^{2}+12 x+3$ is never decreasing.
19. Find the values of x for which the curve $f(x)=2 x^{3}-6 x^{2}-48 x+5$ is strictly increasing.
20. $f(x)=x^{4}-4 x^{3}+5$.

Find the stationary points of $f(x)$ and determine their nature.
21. Find the maximum and minimum values of $f(x)=2 x^{3}-3 x^{2}-12 x$ in the range $-3 \leq x \leq 3$.
22. Shown opposite is the graph of $y=f(x)$.

Sketch the graph of $y=f^{\prime}(x)$.

Trigonometry:

23. Solve the equations
(a) $3 \tan ^{2} x-1=0 \quad 0 \leq x \leq 2 \pi$
(b) $4 \cos (2 x-30)+4=2 \quad 0 \leq x \leq 360$
(c) $3 \sin 2 x=2 \cos x \quad 0 \leq x \leq 360$
24. The diagram opposite shows the graphs of $y=p \cos q x+r$ and $y=\cos x+t$.
(a) Write down the values of $\mathrm{p}, \mathrm{q}, \mathrm{r}$ and t .
(b) Find the coordinates of A and B.

25. (a) Express $4 \sin x+3 \cos x$ in the form $k \sin (x+a)$ where $k>0$ and $0 \leq a \leq 360$
(b) Solve the equation $4 \sin x+3 \cos x=3 \quad 0 \leq x \leq 360$
(c) Find the minimum value of $4 \sin x+3 \cos x$ and the value of x for which it occurs in the range $0 \leq x \leq 360$
(d) Sketch the graph of $y=4 \sin x+3 \cos x$ for $0 \leq x \leq 360$
26. $\tan \mathrm{x}=\frac{1}{2}$. Find the exact value of
(a) $\sin 2 x$
(b) $\cos 2 x$
(c) $\tan 2 x$

2
27. $\cos x=\frac{3}{5}$ and $\sin y=\frac{5}{13}$. Find the exact value of $\cos (x+y)$.

Polynomials:

28. $f(x)=2 x^{3}-3 x^{2}-2 x+3$. Show that $(x-1)$ is a factor of $f(x)$. Find the other factors of $f(x)$.
29. A function is defined as $f(x)=x^{3}+2 x^{2}-5 x-6$. Given -1 is a root of $f(x)$, find the other roots.
30. The function shown in the graph opposite crosses the x -axis at 0 and 4 and the point $(2,16)$ lies on the graph.
Find the equation of this function.

31. -3 is a root of $2 x^{3}-3 x^{2}+p x+30=0$.

Find p and hence find the other roots of $2 x^{3}-3 x^{2}+p x+30=0$.
32. $(x-2)$ and $(x+4)$ are both factors of $x^{3}-2 x^{2}-p x+q$.

Find the values of p and q .

Quadratics/Discriminant:

33. (a) Express $x^{2}-8 x+1$ in the form $(x+a)^{2}+b$.
(b) Sketch the graph of $y=x^{2}-8 x+1$, showing clearly its turning point.
34. (a) Express $f(x)=3 x^{2}+12 x-2$ in the form $f(x)=a(x+b)^{2}+c$.
(b) Hence, or otherwise, write down the turning point of $f(x)$ stating whether this turning point is a maximum or minimum.
35. State the nature of the roots of
(a) $3 x^{2}-2 x-5=0$
(b) $x^{2}+3 x+7=0$
36. The roots of the equation $(x+1)(x+k)=-4$ are equal. Find k.
37. The roots of the equation $x^{2}+k x-3 k=4 k-7$ are real. Find k.
38. Show that $\mathrm{y}=2 \mathrm{x}^{3}+\mathrm{x}^{2}+9 \mathrm{x}+1$ has no stationary points.

Integration:

39. Find
(a) $\int \frac{x^{3}-1}{x^{2}} d x$
(b) $\int_{1}^{4} \sqrt{\mathrm{x}}(\sqrt{\mathrm{x}}-\mathrm{x}) \mathrm{dx}$
40. $\frac{d y}{d x}=3 x^{2}-4 x+1$. Find a formula for y given $\mathrm{y}=2$ when $\mathrm{x}=-1$.
41. Calculate the shaded area in the diagram shown opposite.

42. The diagram shows the line $y=2 x+5$ and the curve $\mathrm{y}=\mathrm{x}^{2}-\mathrm{x}+1$.

Calculate the shaded area.

43. The diagram shows the parabolas $y=x^{2}+2 x$ and $y=4-x^{2}$.

Calculate the area enclosed by these two parabolas.

Circles:

44. A circle has equation $x^{2}+y^{2}-6 x+2 y-35=0$.

Find the equation of the tangent to this circle at the point $(-3,2)$.
45. Find the equation of the circle which has PQ as diameter where
P is $(-2,2)$ and Q is $(6,10)$.
46. (a) The line $y=x-4$ intersects the circle with equation $x^{2}+y^{2}-2 x-2 y-56=0$ at two points A and B. Find the coordinates of A and B.
(b) Find the equation of the circle which has AB as diameter.

47. Prove that the line $y=2 x+6$ is a tangent to the circle with equation $x^{2}+y^{2}-8 x+2 y-28=0$ and find the point of contact.
48. The line $y=x-2$ intersects the circle $x^{2}+y^{2}-4 x+2 y-20=0$ at the points S and T. Find the coordinates of S and T .
49. Three circles touch externally as shown.

The centres of the circles are collinear and the equations of the two smaller circles are

$$
\begin{aligned}
& (x-2)^{2}+(y-9)^{2}=9 \text { and } \\
& x^{2}+y^{2}-28 x+14 y+236=0
\end{aligned}
$$

Find the equation of the larger circle.

Vectors:

$50 . \mathbf{u}=2 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$ and $\mathbf{v}=3 \mathbf{i}+\mathbf{k}$.
(a) Find the vector $3 \mathbf{u}+\mathbf{v}$
(b) Find the magnitude of vector $2 \mathbf{v}-\mathbf{u}$.
(c) Find a unit vector parallel to the vector $2 \mathbf{v}-\mathbf{u}$.
51. A is the point $(-1,2,0), \mathrm{B}$ is $(3,0,6)$ and C is $(9,-3,15)$.

Show that A, B and C are collinear stating the ratio of $\mathrm{AB}: \mathrm{BC}$.
52. The points $\mathrm{P}(0,5,9), \mathrm{Q}(2,3,4)$ and $\mathrm{R}(6, \mathrm{u}, \mathrm{v})$ are collinear.

Find the values of u and v.
53. The points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are $(3,1,-2),(-2,-4,8)(0,-2,4)$ and $(4,2,-4)$ respectively.
(a) T divides PQ in the ratio $2: 3$. Find the coordinates of T .
(b) Show that R, T and S are collinear.
54. $\mathbf{u}=3 \mathbf{i}-2 \mathbf{j}-4 \mathbf{k}$ and $\mathbf{v}=4 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k}$.

Show that the vectors \mathbf{u} and \mathbf{v} are perpendicular.
55. A triangle ABC has vertices $\mathrm{A}(2,1,-6), \mathrm{B}(4,0,-1)$ and $\mathrm{C}(-5,2,3)$.

Show that triangle ABC is right-angled at B .
56. Calculate the angle between the vectors $\mathbf{a}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}$ and $\mathbf{b}=3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$

57. P is the point $(4,0,-3), \mathrm{Q}$ is $(6,1,-1)$ and R is $(14,0,-5)$.

Calculate the size of angle PQR .
58. In the diagram opposite, BCDE is a parallelogram and $\mathrm{AE}=\mathrm{ED}$. $\overrightarrow{\mathrm{BE}}=\mathbf{u}$ and $\overrightarrow{\mathrm{ED}}=\mathbf{v}$ Find, in terms of \mathbf{u} and \mathbf{v}
(i) $\overrightarrow{\mathrm{BD}}$
(ii) $\overrightarrow{\mathrm{AC}}$

(iii) $\overrightarrow{\mathrm{AF}}$ where F divides AC in the ratio $2: 1$
(iv) $\overrightarrow{\mathrm{FD}}$

Further Calculus:

59. Differentiate
(a) $f(x)=\left(x^{2}-5\right)^{4}$
(b) $y=\frac{2}{\sqrt{8 x-3}}$
(c) $f(x)=2 \sin 4 x-2 \cos ^{3} x$
60. $f(x)=2 \sin ^{2} x$. Find the value of $f^{\prime}\left(\frac{\pi}{4}\right)$
61. A curve has equation $y=\sqrt[3]{3 x-1}$. Find the equation of the tangent to this curve at the point where $\mathrm{x}=3$.
62. Find the equation of the tangent to the curve $y=4 \sin \left(2 x-\frac{\pi}{6}\right)$ at the point where $\mathrm{x}=\frac{\pi}{2}$.
63. Integrate
(a) $\int(4 x-6)^{3} d x$
(b) $\int 10 \sqrt{1-6 x} d x$
(c) $\int 6 \cos (2 x-3) d x$
64. Evaluate $\int_{1}^{3} \frac{8}{(2 x-4)^{2}} d x$
65. $\frac{d y}{d x}=2 \cos 4 x$. This curve passes through the point $\left(\frac{5}{12} \pi, \sqrt{3}\right)$. Find a formula for y.
66. The diagram shows part of the graph of

$$
y=\frac{1}{(x-4)^{2}}
$$

Calculate the shaded area.

67. The diagram shows part of the graphs of $y=\sin 2 x$ and $y=\cos x$.
(a) Find the x -coordinates of A and B.
(b) Calculate the shaded area.

Logarithms:

68. Simplify
(a) $\log _{2} 6+\log _{2} 12-\log _{2} 9$
(b) $\frac{3}{4} \log _{10} 16-\frac{1}{2} \log _{10} 4+2 \log _{10} 5$
69. Solve for $\mathrm{x}>0$
(a) $\log _{4} \mathrm{x}+\log _{4}(3 \mathrm{x}-2)=2$
(b) $\log _{3}\left(x^{2}+x-2\right)-\log _{3}\left(x^{2}-4\right)=1$
70. A curve has equation $\mathrm{y}=\log _{2}(\mathrm{x}+4)-3$.

Find where this curve cuts the x and y axes.
71. The mass, M grams, of a radioactive isotope after a time of t years, is given by the formula $M=M_{0} e^{-k t} \quad$ where M_{0} is the initial mass of the isotope.

In 4 years a mass of 20 grams of the isotope is reduced to 15 grams.
(a) Calculate k .
(b) Calculate the half-life of the substance i.e. the time taken for half the substance to decay.
72. Dangerous blue algae are spreading over the surface of a lake according to the formula $A_{t}=A_{0}{ }^{k t}$ where A_{o} is the initial area covered by the algae and A_{t} is the area covered after t days.
When first noticed the algae covered an area of 100 square metres. Two weeks later the algae covered an area of 120 square metres.
(a) Calculate the value of k .
(b) The area of algae on the lake was measured on the $1^{\text {st }}$ of June and again on the $1^{\text {st }}$ of July.
Calculate the percentage increase in area covered by the algae between these dates.
73. The graph opposite illustrates the law $\mathrm{y}=\mathrm{kx}^{\mathrm{n}}$.

Find the values of k and n .

74. The graph opposite illustrates the law $\mathrm{y}=\mathrm{kx}$.

Find the values of k and n .

75. The graph opposite illustrates the law $y=a b^{x}$.

Find the values of a and b.

76. The diagram opposite shows the graph of $\mathrm{y}=\log _{2} \mathrm{x}$.
(a) Find the value of a.
(b) Sketch the graph of $\mathrm{y}=\log _{2} \mathrm{x}-1$
(c) Sketch the graph of $y=\log _{2} 8 x$
(d) Sketch the graph of $y=\log _{2} \frac{1}{x}$

77. The diagram shows the graph of

$$
y=\log _{b}(x+a)
$$

The points $(5,0)$ and $(129,3)$ lie on this graph.

Find the values of a and b .

