# **Higher Mathematics – Revision**

### **Equation of a Line:**

- 1. Find the equation of the line parallel to the line 3x + 2y 10 = 0 which passes through the point (-1,4).
- 2. Find the equation of the line through the point (2,-5) perpendicular to the line AB where A is (4,1) and B is (6,-3).
- 3. Find,  $a^0$ , the angle the line 2x + y = 3 makes with the positive direction of the x-axis.



- 5. A is the point (2,-1), B is (10,-5) and C is (6,2).
  - (a) Find the equation of the perpendicular bisector of AB.
  - (b) Find the equation of the altitude from B to AC.
  - (c) Find the point of intersection of these lines.

## **Graphical Functions:**

- 6. The diagram opposite shows the graph of y = f(x).
  - (a) Sketch the graph of y = -f(x) + 3
  - (b) Sketch the graph of y = -3(x 2)



### **Composition of Functions:**

7. The functions f(x) and g(x) are defined on suitable domains with

$$f(x) = \frac{3x - 4}{x}$$
 and  $g(x) = \frac{4}{3 - x}$ 

- (a) Find a formula for g(f(x)).
- (b) State the connection between f(x) and g(x).



8.  $f(x) = x^2 - x - 12$  and g(x) = 3x + 1

- (a) Find a formula for f(g(x)).
- (b) Solve f(g(x)) = 0.
- (c) State a suitable domain for the function h(x) where  $h(x) = \frac{1}{f(g(x))}$

### **Recurrence Relations:**

- 9.  $u_{n+1} = 0.6u_n + 20$   $u_o = 40$ 
  - (a) Find n such that  $u_n > 49$
  - (b) Explain why  $u_{n+1}$  has a limit and find the exact value of this limit.
- 10. A recurrence relation is defined as  $u_n = au_{n-1} + b$ . The first three terms of this relation are 160, 200 and 230. Find the values of a and b.
- 11. A recurrence relation is  $u_{n+1} = 0.5u_n + 10$ . Given  $u_3 = 30$ , find the value of  $u_1$ .
- 12. Two sequences are defined by the recurrence relations

 $u_{n+1} = 0.4u_n + p$   $v_{n+1} = 0.6v_n + q$ 

If both sequences have the same limit, express p in terms of q.

- A patient is injected with 60 ml of an antibiotic drug. Every 4 hours 30% of the drug passes out of her bloodstream. To compensate for this an extra 20ml of antibiotic is given every 4 hours.
  - (a) Find a recurrence relation for the amount of drug in the patient's bloodstream.
  - (b) Calculate the amount of antibiotic remaining in the bloodstream after one day.

#### **Differentiation:**

14. 
$$f(x) = \frac{x^2 - 1}{\sqrt{x}}$$
. Find  $f'(4)$ 

- 15. s =  $3u(u^2 + 1)$ . Find the rate of change of s when  $u = \frac{4}{3}$
- 16. Find the equation of the tangent to the curve  $y = \frac{x^2(x^2 2)}{x}$  at the point where x = 2.
- 17. A tangent to the curve  $y = x^4 2x$  has gradient -6. Find the equation of this tangent.
- 18. Show that the curve  $y = x^3 6x^2 + 12x + 3$  is never decreasing.

- 19. Find the values of x for which the curve  $f(x) = 2x^3 6x^2 48x + 5$  is strictly increasing.
- 20.  $f(x)=x^4 4x^3 + 5$ . Find the stationary points of f(x) and determine their nature.
- 21. Find the maximum and minimum values of  $f(x) = 2x^3 3x^2 12x$ in the range  $-3 \le x \le 3$ .
- 22. Shown opposite is the graph of y = f(x).

Sketch the graph of y = f'(x).



### **Trigonometry:**

23. Solve the equations

| (a) $3\tan^2 x - 1 = 0$      | $0 \le x \le 2\pi$ |
|------------------------------|--------------------|
| (b) $4\cos(2x - 30) + 4 = 2$ | $0 \le x \le 360$  |
| $()$ $a$ $\cdot$ $a$ $a$     | 0 4 40 60          |

- (c)  $3\sin 2x = 2\cos x$   $0 \le x \le 360$
- 24. The diagram opposite shows the graphs of  $y = p \cos qx + r$  and  $y = \cos x + t$ .
  - (a) Write down the values of p, q, r and t.
  - (b) Find the coordinates of A and B.



- 25. (a) Express 4sin x + 3cos x in the form ksin(x + a) where k > 0 and  $0 \le a \le 360$ 
  - (b) Solve the equation  $4\sin x + 3\cos x = 3$   $0 \le x \le 360$
  - (c) Find the minimum value of  $4\sin x + 3\cos x$  and the value of x for which it occurs in the range  $0 \le x \le 360$
  - (d) Sketch the graph of  $y = 4\sin x + 3\cos x$  for  $0 \le x \le 360$

26. 
$$\tan x = \frac{1}{2}$$
. Find the exact value of  
(a)  $\sin 2x$   
(b)  $\cos 2x$   
(c)  $\tan 2x$   
(c)  $\tan$ 

27. 
$$\cos x = \frac{3}{5}$$
 and  $\sin y = \frac{5}{13}$ . Find the exact value of  $\cos(x + y)$ .

#### **Polynomials:**

- 28.  $f(x) = 2x^3 3x^2 2x + 3$ . Show that (x 1) is a factor of f(x). Find the other factors of f(x).
- 29. A function is defined as  $f(x) = x^3 + 2x^2 5x 6$ . Given -1 is a root of f(x), find the other roots.
- 30. The function shown in the graph opposite crosses the x-axis at 0 and 4 and the point (2,16) lies on the graph.Find the equation of this function.



- 31. -3 is a root of  $2x^3 3x^2 + px + 30 = 0$ . Find p and hence find the other roots of  $2x^3 - 3x^2 + px + 30 = 0$ .
- 32. (x 2) and (x + 4) are both factors of  $x^3 2x^2 px + q$ . Find the values of p and q.

#### **Quadratics/Discriminant:**

- 33. (a) Express  $x^2 8x + 1$  in the form  $(x + a)^2 + b$ . (b) Sketch the graph of  $y = x^2 - 8x + 1$ , showing clearly its turning point.
- 34. (a) Express  $f(x) = 3x^2 + 12x 2$  in the form  $f(x) = a(x + b)^2 + c$ . (b) Hence, or otherwise, write down the turning point of f(x) stating
  - (b) Hence, or otherwise, write down the turning point of I(x) stating whether this turning point is a maximum or minimum.
- 35. State the nature of the roots of
  - (a)  $3x^2 2x 5 = 0$  (b)  $x^2 + 3x + 7 = 0$

36. The roots of the equation (x + 1)(x + k) = -4 are equal. Find k.

37. The roots of the equation  $x^2 + kx - 3k = 4k - 7$  are real. Find k.

38. Show that  $y = 2x^3 + x^2 + 9x + 1$  has no stationary points.

# **Integration:**

- 39. Find (a)  $\int \frac{x^3 1}{x^2} dx$  (b)  $\int_1^4 \sqrt{x} (\sqrt{x} x) dx$
- 40.  $\frac{dy}{dx} = 3x^2 4x + 1$ . Find a formula for y given y = 2 when x = -1.
- 41. Calculate the shaded area in the diagram shown opposite.



Calculate the shaded area.

43. The diagram shows the parabolas  $y = x^2 + 2x$  and  $y = 4 - x^2$ .

Calculate the area enclosed by these two parabolas.



# **Circles:**

- 44. A circle has equation  $x^2 + y^2 6x + 2y 35 = 0$ . Find the equation of the tangent to this circle at the point (-3,2).
- 45. Find the equation of the circle which has PQ as diameter where P is (-2,2) and Q is (6,10).
- 46. (a) The line y = x 4 intersects the circle with equation  $x^2 + y^2 2x 2y 56 = 0$  at two points A and B. Find the coordinates of A and B.
  - (b) Find the equation of the circle which has AB as diameter.  $x^{2} + y^{2} - 2x - 2y - 56 = 0$

- 47. Prove that the line y = 2x + 6 is a tangent to the circle with equation  $x^2 + y^2 8x + 2y 28 = 0$  and find the point of contact.
- 48. The line y = x 2 intersects the circle  $x^2 + y^2 4x + 2y 20 = 0$ at the points S and T. Find the coordinates of S and T.
- 49. Three circles touch externally as shown. The centres of the circles are collinear and the equations of the two smaller circles are

$$(x-2)^{2} + (y-9)^{2} = 9$$
 and  
 $x^{2} + y^{2} - 28x + 14y + 236 = 0$ 

Find the equation of the larger circle.



 $\mathbf{y} = \mathbf{x}$ 

# **Vectors:**

50. u = 2i - 3j + 2k and v = 3i + k.

- (a) Find the vector  $3\mathbf{u} + \mathbf{v}$
- (b) Find the magnitude of vector  $2\mathbf{v} \mathbf{u}$ .
- (c) Find a unit vector parallel to the vector  $2\mathbf{v} \mathbf{u}$ .

- 51. A is the point (-1,2,0), B is (3,0,6) and C is (9,-3,15). Show that A, B and C are collinear stating the ratio of AB:BC.
- 52. The points P(0,5,9), Q(2,3,4) and R(6,u,v) are collinear. Find the values of u and v.
- 53. The points P, Q, R and S are (3,1,-2), (-2,-4,8) (0,-2,4) and (4,2,-4) respectively.
  - (a) T divides PQ in the ratio 2:3. Find the coordinates of T.
  - (b) Show that R, T and S are collinear.
- 54. u = 3i 2j 4k and v = 4i 2j + 4k.

Show that the vectors  $\mathbf{u}$  and  $\mathbf{v}$  are perpendicular.

55. A triangle ABC has vertices A(2,1,-6), B(4,0,-1) and C(-5,2,3).

Show that triangle ABC is right-angled at B.

56. Calculate the angle between the vectors  $\mathbf{a} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$ and  $\mathbf{b} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ 



D

С

E

u

В

57. P is the point (4,0,-3), Q is (6,1,-1) and R is (14,0,-5).

Calculate the size of angle PQR.

58. In the diagram opposite, BCDE is a parallelogram and AE = ED.  $\overrightarrow{BE} = \mathbf{u}$  and  $\overrightarrow{ED} = \mathbf{v}$ 

Find, in terms of **u** and **v** 

- (i)  $\overrightarrow{BD}$  (ii)  $\overrightarrow{AC}$
- (iii)  $\overrightarrow{AF}$  where F divides AC in the ratio 2:1

(iv) FD

### **Further Calculus:**

59. Differentiate

(a) 
$$f(x) = (x^2 - 5)^4$$
 (b)  $y = \frac{2}{\sqrt{8x - 3}}$  (c)  $f(x) = 2\sin 4x - 2\cos^3 x$ 

60.  $f(x) = 2\sin^2 x$ . Find the value of  $f'(\frac{\pi}{4})$ 

- 61. A curve has equation  $y = \sqrt[3]{3x-1}$ . Find the equation of the tangent to this curve at the point where x = 3.
- 62. Find the equation of the tangent to the curve  $y = 4\sin \left(2x \frac{\pi}{6}\right)$  at the point where  $x = \frac{\pi}{2}$ .
- 63. Integrate

(a) 
$$\int (4x-6)^3 dx$$
 (b)  $\int 10\sqrt{1-6x} dx$  (c)  $\int 6\cos(2x-3) dx$ 

64. Evaluate 
$$\int_{1}^{3} \frac{8}{(2x-4)^2} dx$$

65.  $\frac{dy}{dx} = 2\cos 4x$ . This curve passes through the point  $\left(\frac{5}{12}\pi, \sqrt{3}\right)$ . Find a formula for y.



## Logarithms:

68. Simplify

(a) 
$$\log_2 6 + \log_2 12 - \log_2 9$$
 (b)  $\frac{3}{4} \log_{10} 16 - \frac{1}{2} \log_{10} 4 + 2\log_{10} 5$ 

69. Solve for x > 0

(a) 
$$\log_4 x + \log_4 (3x - 2) = 2$$
 (b)  $\log_3 (x^2 + x - 2) - \log_3 (x^2 - 4) = 1$ 

- 70. A curve has equation  $y = \log_2 (x + 4) 3$ . Find where this curve cuts the x and y axes.
- 71. The mass, M grams, of a radioactive isotope after a time of t years, is given by the formula  $M = M_0 e^{-kt}$  where  $M_0$  is the initial mass of the isotope.

In 4 years a mass of 20 grams of the isotope is reduced to 15 grams.

- (a) Calculate k.
- (b) Calculate the half-life of the substance i.e. the time taken for half the substance to decay.
- 72. Dangerous blue algae are spreading over the surface of a lake according to the formula  $A_t = A_0 e^{kt}$  where  $A_0$  is the initial area covered by the algae and  $A_t$  is the area covered after t days.

When first noticed the algae covered an area of 100 square metres. Two weeks later the algae covered an area of 120 square metres.

- (a) Calculate the value of k.
- (b) The area of algae on the lake was measured on the 1<sup>st</sup> of June and again on the 1<sup>st</sup> of July.

Calculate the percentage increase in area covered by the algae between these dates.

73. The graph opposite illustrates the law  $y = kx^n$ .

Find the values of k and n.



