TOPICS

- Average and Spread
- Mean
- Median
- Mode
- Range
- Standard Deviation
- Comparing averages and spread
- Quartiles and Boxplots
- Lower and upper quartiles
- Interquartile and semi interquartile range
- Drawing and reading from boxplots
- Plotting and reading from scattergraphs

$$
\begin{aligned}
& \text { STATISTICS }
\end{aligned}
$$

＊2 子小⿱二小欠心十

When we find the mean，median or mode we are finding an average for a set of data．This average tells us about the tendency of the data， or gives us a value that represents data as a whole

When we calculate the range we are finding out about the spread， or how consistent the data is

Find the MMMR of the set of data:
$201 \quad 123 \quad 159 \quad 162 \quad 20+123 \quad 159-160 \quad 212$ $+3,5-157 \quad 169212+30-178160$

$$
\begin{aligned}
& M_{\text {ear }}=\frac{2641}{16}=165.0625 \\
& \text { Media }=123123130135157159159160116016216981701201212212 \\
& =160 \\
& \text { Mode }=123,159,160,201,212 \\
& \begin{array}{c}
\text { High }- \text { Low } \\
R_{\text {ane }}=212-123=88
\end{array}
\end{aligned}
$$

-

A class did a short test. The scores are given below.
II, I4, 56, 56, 57, 6I, 62, 64,64

Which measure of average is most representative of the class results.
Explain your answer.

Mode $=56$ and 64 - the mode has two values so not a good representation.
Median $=57$ - this average represents the upper values well but not II and 14.

Mean $=49.44$ - the mean is lower than the majority of scores so is not the representative of the list overall.

Although it does not demonstrate that there were scores as low as II and 14, the median is probably most representative overall of the list.

Mean $=\frac{\text { total }}{\text { no. }}$

$$
\begin{aligned}
\frac{45+78+63+91+?}{5} & =64 \\
45+78+63+91+? & =320 \\
? & =320-45-78-63-91
\end{aligned}
$$

The missing person's weight is 43 kg .
a) Find the mean, median and mode and range of the data below.

$$
\begin{aligned}
& \quad 162,264,114,156,164,211,157,161,256, \\
& \quad 114,156,157,161,162,164,211,266,264 \\
& \text { mean }=\frac{1645}{9}=182.8 \\
& \text { median }=162 \\
& \text { mode }= \\
& \text { range }= \\
& \text { no mode } \\
& 264-164=150
\end{aligned}
$$

- You should have completed the page on averages (pg232-233)
- If you have not done this I will be expecting to see it tomorrow:
- Qla, 2a, 3a, 4a, 5, 6
- QII-I2 on pg234 should be attempted by those aiming for A / B

Standard deviation is a measure of spread. It tells us how far numbers in a set of data differ from the mean.

Imagine two sets of data: $5,1|0,2| 5,320,425$ and $2|3,2| 4,2|5,2| 6$, 217. Both of these data sets have the same mean average of 215 . What do you notice about the consistency of the two data sets? Whilst the average of the data sets is the same, the standard deviation will be different to represent the consistency of values.

Companies or researchers may use SD to test whether products they are manufacturing or selling fit the description used.

- This is the formula to calculate standard deviation.

$$
\begin{aligned}
& \begin{array}{l}
\text { total each value } \\
{ }^{\text {csumof }}{ }^{\prime}=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}{ }^{G_{x \text { bar }}},
\end{array} \\
& \text { number } \\
& \text { of values }
\end{aligned}
$$

We use a SD table to calculate the numerator of the formula.
*Example: Find the standard deviation of $5,110,215,320,425$ 大
$\underline{\underline{\text { mean }}}=215=\bar{x}$

$$
\begin{aligned}
S D & =\sqrt{\frac{\sum(x-\bar{x})^{2}}{n_{n-1}}} \leftarrow_{\text {ni the list }}^{\text {total of }} \begin{array}{c}
\text { fid column }
\end{array} \\
& =\sqrt{\frac{110250}{5-1}} \\
& =\sqrt{\frac{110250}{4}=166.0195 \ldots} \begin{array}{l}
=166.02
\end{array}
\end{aligned}
$$

- Page 242 Q3 - Q7
- You must finish these in your spare time if you do not finish them in class.
- If the median is halfway through a list, then the quartiles show the quarter and three-quarter points.

To find the quartiles we first have to find the median.
Then we look for the middle point of each half to get the lower and upper quartiles.

Example:

Ia) The heights of 9 people in Town A were recorded.
Find the median and quartiles of the heights.

131.2	149.1	134.3	156.4	174.5	182.3	159.0	163.4	190.6

$131.2 \quad 134.3$
\downarrow
Lower Quartile $=141.87$

The interquartile range is the difference between the LQ and the UQ.
The semi-interquartile range is half of the IQR.

Ib) Find the IQR and the SIQR of the heights from Ia).

$$
\begin{array}{rlr}
I Q R & =U Q-L Q & 178^{7} \cdot 4 \\
& =178.4-141.7 & -\frac{141.7}{36.7} \\
& =36.7 & \\
S I Q R & =36.7 \div 2 & 2 \sqrt{36.7} \\
& =18.35 &
\end{array}
$$

When you have to make comments remember:
Comparing two means/medians is comparing the average.
Comparing the standard deviation/range is comparing the variation.

Ic) A group of people from Town B had a median of 152.5 cm and an IQR of 21.6 cm .
Town Make two valid statements comparing Town A and Town B.
med: 159.0
IR: 36.7

- The average height of Town A is taller than Town B as $159.0>152.5$.
- The variation of heights in Town A is bigger than Town B as 36.7>21.2.

Exercise 7 B

1 a $6,3,6,8,5$
b $38.5,29,38.5,46.5,17.5$
c $5.3,2.95,5.3,7.8,4.85$
2 measurements in cm
a (i) 135
(ii) $124,135,165$
(iii) 41
b (i) 42
(ii) $38,42,52$
(iii) 14
c Indian ears very much smaller and less variation.
3 measurements in $£$
a (i) 149000
(ii) 128000, 149000, 163000
(iii) 35000
b (i) 118000
(ii) $99000,118000,136000$
(iii) 37000

STATISTICS

- A box plot represents a summary of data so we can see where the majority of the data lies.
- It is sometimes called a 'five figure summary'
- It shows us the range, median and interquartile range of the data without having to analyse the values themselves.

- We need a scale, and we need some data....

$$
\begin{aligned}
& \quad 9,8,8,11,10,5, \not 0,9, \not 0,6,8,4,11,12,8,5 \\
& * \underbrace{4,5,5,5,5,5,5,6,8,}_{\text {Lowest }=4}, 9,9,9,10,10,10,11,11,12
\end{aligned}
$$

Lower quartile $\left(Q_{1}\right)=5$
$\operatorname{Median}\left(Q_{2}\right)=8.5$
Upper quartile $\left(\mathrm{Q}_{3}\right)=10$
Highest Value $=12$

A

- B has a larger variation overall.
- A has a bigger IQR.

b Much wider range in students. On average pensioners better.
3 a

b Men wider range and on average higher. IQR greater.
4 a

b C most effective. C has greater IQR and much higher median.

b Spanish tempertures are generally higher, greater IQR.
6 a Friday lowest $=27, \mathrm{Q} 1=36, \mathrm{Q} 2=46$, Q3 $=51$, highest $=61$
Saturday lowest $=21, \mathrm{Q} 1=29, \mathrm{Q} 2=$ $43, \mathrm{Q} 3=60$, highest $=78, \mathrm{SIQR}=15.5$
b $7.5,15.5$
c Median Friday time was slightly higher. Saturday SIQR greater.
7 Although Dr Ball has a higher median waiting time (7 mins vs 5 mins), there are much less extremes. Dr Ball is best as you are never waiting longer than 10 minutes.
8 Town A has greater extremes in temp but median is much lower. Town B better for holiday.

- How to plot points on a scattergraph
- How to draw a line of best fit

- How to use the line of best fit to estimate one variable given the other
- Different types of correlation

| Maths score | English Score |
| :---: | :---: | :---: |
| 10 | 14 |
| 15 | 22 |
| 18 | 15 |
| 25 | 28 |
| 7 | 6 |

Positive correlation
As one variable increases so does the other.

Example: Height and shoe size

Negative correlation
As one variable increase the other decreases

Example: Hours of watching tv against hours of exercise

No correlation

There is no correlation between the variables
Example: Height and IQ

- You can also have strong and weak correlations if the points are very tightly grouped.
- Task I
- Ql and Q2
- Page II7 L\&L

A person with arm length of 46 would be expected to have a hand length of \qquad 19 cm .

A person with hand length of 18 would be expected to have a arm length of \qquad 44 cm .

