Calculators should be used and all answers rounded to $1 \mathbf{d p}$

Unit level:

1. The diagram shows 2 directed line segments p and \boldsymbol{q}.

Draw the resultant of $2 \boldsymbol{p}+\boldsymbol{q}$

2. Vector $\boldsymbol{p}=\binom{1}{6}$ and vector $\boldsymbol{q}=\binom{2}{-6}$. Calculate $|3 \boldsymbol{p}+\boldsymbol{q}|$
3. The forces acting on a body are represented by three vectors $\boldsymbol{F}_{1}, \boldsymbol{F}_{\mathbf{2}}$ and F_{3} are given opposite.

Find the resultant
force ($\boldsymbol{F}_{1}+\boldsymbol{F}_{2}+\boldsymbol{F}_{3}$).

$$
\begin{aligned}
& \boldsymbol{F}_{\mathbf{1}}=\left(\begin{array}{c}
4 \\
1 \\
1.5
\end{array}\right) \\
& \boldsymbol{F}_{\mathbf{2}}=\left(\begin{array}{c}
-2 \\
8 \\
6.5
\end{array}\right)
\end{aligned}
$$

$$
F_{3}=\left(\begin{array}{c}
3.5 \\
9 \\
-1
\end{array}\right)
$$

4. The diagram shows a squarebased pyramid of height 8 units.

Square $O A B C$ has a side length of 6 units.

What are the coordinates of B and D ?

Assessment level:

5. The diagram shows a regular hexagon PQRSTW.
$\overrightarrow{P W}$ and $\overrightarrow{P Q}$ represent vectors u and v respectively.

What is $\overrightarrow{S W}$ in terms of \boldsymbol{u} and v ?

PTO
6. Given that $\boldsymbol{p}=\left(\begin{array}{c}2 \\ 5 \\ -7\end{array}\right), \boldsymbol{q}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ and $\boldsymbol{r}=\left(\begin{array}{c}-4 \\ 2 \\ 0\end{array}\right)$, express $2 \boldsymbol{p}-\boldsymbol{q}-\frac{1}{2} \boldsymbol{r}$ in component form
7. Given that $\boldsymbol{u}=\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$ and $\boldsymbol{v}=\left(\begin{array}{c}-1 \\ 2 \\ 4\end{array}\right)$, find $|3 \boldsymbol{u}-2 \boldsymbol{v}|$
8. A cuboid measuring 11 cm by 5 cm by 7 cm is placed centrally on top of another cuboid measuring 17 cm by 9 cm by 8 cm . Coordinate axes are taken as shown.

The point A has coordinates ($0,9,8$). Write down the coordinates of B and C
9. If $\boldsymbol{u}=k\left(\begin{array}{l}2 \\ 3 \\ 6\end{array}\right)$, where $k>0$ and $|\boldsymbol{u}|=28$, determine the value of k.

