

Remove brackets and simplify

$$
a^{\frac{1}{2}}\left(a^{\frac{1}{2}}-2\right) .
$$

Simplify

$$
m^{3} \times \sqrt{m}
$$

Express

$$
p^{3}\left(p^{2}-p^{-3}\right)
$$

in its simplest form.

Simplify $\sqrt{2}(\sqrt{3}+\sqrt{2})-\sqrt{6}$.
Evaluate

$$
9^{\frac{3}{2}}
$$

Calculate the length of AC, leaving your answer as a surd in its simplest form.
(a) Simplify
$2 a \times a^{-4}$.
(b) Solve for $x, \quad \sqrt{x}+\sqrt{18}=4 \sqrt{2}$.

(a) Simplify

$$
\frac{m^{5}}{m^{3}}
$$

(b) Express

$$
2 \sqrt{5}+\sqrt{20}-\sqrt{45}
$$

as a surd in its simplest form.

Express

$$
\sqrt{63}+\sqrt{28}-\sqrt{7}
$$

as a surd in its simplest form.

Express $\frac{12}{\sqrt{2}}$ with a rational denominator.
Give your answer in its simplest form.

Simplify

$$
\frac{a b^{6}}{a^{3} b^{2}}
$$

13
Simplify the expression below, giving your answer with a positive power.

$$
m^{5} \times m^{-8}
$$

Simplify, expressing your answer with positive indices.

$$
\left(x^{2} y^{4}\right) \div\left(x^{-3} y^{6}\right)
$$

One atom of gold weighs 3.27×10^{-22} grams.
How many atoms will there be in one kilogram of gold?
Give your answer in scientific notation correct to 2 significant figures.

There are 3×10^{5} platelets per millilitre of blood.
On average, a person has $5 \cdot 5$ litres of blood.
On average, how many platelets does a person have in their blood?
Give your answer in scientific notation.

Three of the following have the same value.

$$
2 \sqrt{6}, \quad \sqrt{2} \times \sqrt{12}, \quad 3 \sqrt{8}, \quad \sqrt{24}
$$

Part of the graph of $y=a^{x}$, where $a>0$, is shown below.

The graph cuts the y-axis at C .
(a) Write down the coordinates of C .
B is the point $(2,16)$.
(b) Calculate the value of a.

Calculate the value of x, giving your answer as a surd in its simplest form.
(a) Evaluate $\left(2^{3}\right)^{2}$.
(b) Hence find n, when $\left(2^{3}\right)^{n}=\frac{1}{64}$.

